Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc
Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2
Với x3y3+y3z3+z3x3=3x2y2z2 ta có:
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Vậy ....
Vì 1/x + 1/y + 1/z = 0 nên lần lượt nhân vs x; y; z ta có:
1 + x/y + x/z = 0 (1)
1 + y/z + y/x = 0 (2)
1 + z/x + z/y = 0 (3)
Từ (1); (2); (3) suy ra : x/y + y/z + z/x + x/z + y/x + z/y = - 3 (*)
Mặt khác : 1/x + 1/y + 1/z = 0 nên quy đồng lên ta có:
(xy + yz + zx)/xyz = 0 hay xy + yz + zx = 0
Hay : (1/x^2 + 1/y^2 + 1/z^2).(xy + yz + zx) = 0
khai triển ra :
yz/x^2 + zx/y^2 + xy/z^2 + x/y + y/z + z/x + x/z + y/x + z/y = 0
Vậy : yz/x^2 + zx/y^2 + xy/z^2 = - (x/y + y/z + z/x + x/z + y/x + z/y) = 3 (theo (*))
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow(\frac{1}{x}+\frac{1}{y})^3=(\frac{-1}{z})^3\)
\(\Rightarrow\frac{1}{x^3}+3\frac{1}{x^2}\frac{1}{y}+3\frac{1}{x}\frac{1}{y^2}+\frac{1}{y^3}=\frac{-1}{z^3}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}(\frac{1}{x}+\frac{1}{y})\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{x}\frac{1}{y}\frac{1}{z}\)
\(\Rightarrow(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3})xyz=3\frac{1}{x}\frac{1}{y}\frac{1}{z}\cdot xyz\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
Ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
\(\Rightarrow A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{xyz.3}{xyz}=3\)