K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

ăn cứt

27 tháng 3 2020
  1. trong 1000 số tự nhiên dầu tiên luôn có luôn tồn tại 1 số chia hết cho 1000 .Gọi số đó là [Aooo] 
  2. Xét 27 số:A000,A001,A002,...,A009,...,A019,...,A899 
  3. Có tổng các chữ số :n,n+1,n+2,n+26 
  4. Sẽ luôn có 1 số chia hết cho 27 
  5. suy ra:... 

HỌC TỐT 

a,Giả sử tích 2 số nguyên dương là 1 số chính phương

Gọi 2 số đó là \(x;x+1\left(x\inℕ^∗\right)\)

ta có:\(x\left(x+1\right)=a^2\left(a\inℤ|a\ne0\right)\)

Mà x và x+1 nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x+1=c^2\Rightarrow b^2+1=c^2\end{cases}}\)

\(\Rightarrow1=c^2-b^2=\left(c-b\right)\left(c+b\right)\Rightarrow c-b=c+b\Rightarrow b=0\Rightarrow x=0\)(Trái với giả thuyết)

Vậy điều giả sử là sai,do đó tích 2 số nguyên dương ko là số chính phương(DPCM)

Giả sử có số thỏa mãn đề bài

Gọi 3 số đó là\(x-1;x;x+1\left(x\inℕ|x>1\right)\)

Ta có:\(\left(x-1\right)x\left(x+1\right)=a^2\)(điều kiện như câu a)

\(\Rightarrow\left(x-1\right)\left(x+1\right)x=a^2\Rightarrow\left(x^2-1\right)x=a^2\)

Gọi d là ước chung của x và\(x^2-1\)

\(\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x⋮d\Rightarrow x^2⋮d\end{cases}}\)

\(\Rightarrow x^2-\left(x^2-1\right)=1⋮d\Rightarrow d=1\)

Do đó x và\(x^2-1\)nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x^2-1=\left(b^2\right)^2-1=c^2\end{cases}}\)

\(\Rightarrow\left(b^2\right)^2-1=c^2\Rightarrow\left(b^2\right)^2-c^2=1\Rightarrow\left(b^2-c\right)\left(b^2+c\right)=1\Rightarrow b^2-c=b^2+c\Leftrightarrow c=0\)

\(\Rightarrow\left(b^2\right)^2-1=0\Rightarrow\left(b^2\right)^2=1\Rightarrow b^2=1\Rightarrow x=1\)(Trái với giả thuyết)

Vậy điền giả sử là sai,do đó ko có số nguyên dương thỏa mãn đề bài(ĐPCM)

8 tháng 5 2016

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=>\(\frac{b-a}{ab}=\frac{1}{a-b}\)

=>\(\left(b-a\right).\left(a-b\right)=ab\)

Ta có: b-a và a-b là 2 số đối nhau

=>(b-a).(a-b) < 0

Mà a.b > 0 (vì a;b là 2 số nguyên dương)

=>\(\left(b-a\right).\left(a-b\right)\ne ab\)

=>không tờn tại 2 số nguyên dương a;b khác nhau thỏa mãn đề bài