K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

đề cho thiếu nếu ko là ko có max đâu

21 tháng 8 2021

Có nha làm đc r

ta có:

\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+4bc+4c^2\le3b^2+6c^2\Leftrightarrow\left(b+2c\right)^2\le3b^2+6c^2\)

\(\Leftrightarrow\frac{\left(b+2c\right)^2}{3b^2+6c^2}\le1\Leftrightarrow\frac{b+2c}{\sqrt{3b^2+6c^2}}\le1\Leftrightarrow\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}\le a\)

cmtt =>\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c

NV
24 tháng 9 2019

\(\sqrt{a^2+b^2+6c}=\sqrt{a^2+b^2+2c\left(a+b+c\right)}\)

\(=\sqrt{a^2+b^2+2c^2+2bc+2ca}=\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}\)

\(\Rightarrow\frac{a+b}{\sqrt{\left(a+c\right)^2+\left(b+c\right)^2}}=\sqrt{\frac{\left(a+b\right)^2}{\left(a+c\right)^2+\left(b+c\right)^2}}\)

Đặt \(\left(\left(a+b\right)^2;\left(b+c\right)^2;\left(c+a\right)^2\right)=\left(x;y;z\right)\)

\(\Rightarrow P=\sum\sqrt{\frac{x}{y+z}}\)

Đến đây thì dễ rồi, bài toán cơ bản

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\Rightarrow\frac{x\sqrt{y+z}}{\sqrt{x}}\le\frac{x+y+z}{2}\Rightarrow\sqrt{\frac{y+z}{x}}\le\frac{x+y+z}{2x}\)

\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\Rightarrow P\ge\sum\frac{2x}{x+y+z}=2\)

Dấu "=" ko xảy ra nên \(P>2\)

20 tháng 8 2016

3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)

Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\);  \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)

Cộng vế với vế các bất đẳng thức cùng chiều ta được: 

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )

dấu " = " xẩy ra khi a = b = c > 0

25 tháng 3 2017

cff333vvvvvvffffffdddd

26 tháng 3 2017

Bài 1: Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến

15 tháng 4 2020

Đặt vế trái của bất đẳng thức là M

NV
23 tháng 4 2021

Bạn tham khảo:

Cho \(a,b,c>\dfrac{25}{4}.\)Tìm GTNN của \(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\) - Hoc24

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

20 tháng 7 2019

Ta có bất đẳng thức phụ sau (bđt Mincopski)

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)

Thật vậy :

 \(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt hiển nhiên đúng

*Nếu xz + yt > 0 thì bđt trở thành 

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)

Vậy bđt được chứng minh

Áp dụng bđt trên 2 lần ta được

\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)

   \(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)

   \(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)

Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)

Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)

        \(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)

\(\Rightarrow a+b+c\le\sqrt{3t}\)

Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)

Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)

Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)

\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)

\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)

Có \(\sqrt{t}\ge9-3\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)

Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)

Dấu "=" xảy ra tại a = b = c

P/S: sai đâu thì thôi nha :v a lười ktra lại lắm

6 tháng 2 2021

cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)

NV
7 tháng 2 2021

\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)

12 tháng 7 2018

a) ĐKXĐ : \(a\ge0;a\ne4;a\ne25\) Rút gọn:\(M=\dfrac{5}{\sqrt{a}+2}\) (xin lỗi, mình đã làm rồi nhưng bài giải ko được gửi đi, đây là M sau khi rút gọn, bạn tìm cách rút nha, cũng dễ lắm ^_^). b) M<1 khi \(\dfrac{5}{\sqrt{a}+2}< 1\Leftrightarrow\dfrac{5}{\sqrt{a}+2}-1< 0\Leftrightarrow\dfrac{5-\sqrt{a}-2}{\sqrt{a}+2}< 0\Leftrightarrow\dfrac{3-\sqrt{a}}{\sqrt{a}+2}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-\sqrt{a}< 0\\\sqrt{a}+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-\sqrt{a}>0\\\sqrt{a}+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{a}>3\\\sqrt{a}>-2\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{a}< 3\\\sqrt{a}< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}>3\Leftrightarrow a>9\left(a\ne25\right)\\\sqrt{a}< -2\Leftrightarrow a\in\varnothing\end{matrix}\right.\) Vậy M<1 khi a>9 (a khác 25).

12 tháng 7 2018

c) tìm GTLN của M=\(\dfrac{5}{\sqrt{a}+2}\), ta có:\(a\ge0\Leftrightarrow\sqrt{a}\ge0\Leftrightarrow\sqrt{a}+2\ge2\Leftrightarrow\dfrac{5}{\sqrt{a}+2}\le\dfrac{5}{2}\Rightarrow maxM=\dfrac{5}{2}khi\sqrt{a}=0\Leftrightarrow a=0\)