K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:
BĐT đã cho tương đương với:

\(\frac{a}{b}-\frac{b}{a}+\frac{b}{c}-\frac{c}{b}+\frac{c}{a}-\frac{a}{c}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}+\frac{b^2-c^2}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow \frac{a^2-b^2}{ab}-\frac{(a^2-b^2)+(c^2-a^2)}{bc}+\frac{c^2-a^2}{ca}\geq 0\)

\(\Leftrightarrow (a^2-b^2)\left(\frac{1}{ab}-\frac{1}{bc}\right)+(c^2-a^2)\left(\frac{1}{ca}-\frac{1}{bc}\right)\geq 0\)

\(\Leftrightarrow (a^2-b^2)(c-a)+(c^2-a^2)(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(a+b)(c-a)-(c-a)(c+a)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)(c-a)\geq 0\) (luôn đúng với mọi $0< a\leq b\leq c$)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$

AH
Akai Haruma
Giáo viên
22 tháng 8 2019

Lời giải:

Xét hiệu:

\(\frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)=\frac{ba+c^2}{ac}-\frac{b^2+a^2}{ab}=\frac{b^2a+c^2b}{abc}-\frac{b^2c+a^2c}{abc}\)

\(=\frac{ab^2+bc^2-b^2c-a^2c}{abc}\geq \frac{a^2b+bc^2-b^2c-a^2c}{abc}=\frac{a^2(b-c)-bc(b-c)}{abc}=\frac{(a^2-bc)(b-c)}{abc}\)

Vì $0< a\leq b\leq c\Rightarrow a^2-bc\leq 0; b-c\leq 0$

$\Rightarrow \frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)\geq 0$

$\Rightarrow \frac{b}{c}+\frac{c}{a}\geq \frac{b}{a}+\frac{a}{b}$ (đpcm)

7 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Thị Ngọc Thơ, @tth_new

help me! cần gấp lắm ạ!

thanks nhiều!

4 tháng 12 2016

Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)\(\ge\)2b

Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)

Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)

Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh

#nga

4 tháng 12 2016

Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý. 

17 tháng 5 2017

\(\frac{a}{1+a}-1+\frac{b}{1+b}-1+\frac{c}{1+c}-1\)

\(=-\left(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\right)\)

\(\le-\frac{9}{3+a+b+c}=-\frac{9}{4}\)

\(\Rightarrow\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le-\frac{9}{4}+3=\frac{3}{4}\)

9 tháng 10 2015

\(\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}=\frac{\sqrt{bc}}{2abc}\)

\(VT\le\frac{\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

\(\left(\text{bđt }x^2+y^2+z^2\ge xy+yz+zx\right)\)

9 tháng 8 2016

a

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.

b

\(a^2+b^2\ge2ab\)

\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)

Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.

9 tháng 8 2016

mình chỉ làm đc câu a thôi nhưng dài lắm

bài đó áp dụng bất đẳng thức cô si

18 tháng 9 2015

a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta. 

b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).

chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm