K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{6}=\frac{3}{2}\)

\(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+bc+ca}\ge\frac{27}{\left(a+b+c\right)^2}=\frac{27}{36}=\frac{3}{4}\)

\(\frac{1}{abc}\ge\frac{1}{\left(\frac{a+b+c}{3}\right)^3}=\frac{27}{\left(a+b+c\right)^3}\ge\frac{27}{6^3}=\frac{1}{8}\)

Cộng lại ta được:

\(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\frac{27}{8}\left(đpcm\right)\)

Dấu "=" xảy ra tại \(a=b=c=2\)

16 tháng 8 2018

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án

7 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,

Nguyễn Thị Ngọc Thơ, @tth_new

help me! cần gấp lắm ạ!

thanks nhiều!

1 tháng 10 2017

\(a+b\ge\sqrt[3]{a}"\sqrt[3]{a}+\sqrt[3]{b}"=\frac{\sqrt[3]{a}+\sqrt[3]{b}}{\sqrt[3]{c}}\)

\(\Rightarrow\frac{1}{a+b+1}\le\frac{\sqrt[3]{c}}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\) 

\(\Rightarrow\)Xong rồi

P/s: Ko chắc

1 tháng 10 2017

mk ko hiểu

27 tháng 7 2017

Vì a, b, c > 0

Ta có  \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

 Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(VT=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{\left(1+1+1\right)^2}{3+\left(ab+bc+ca\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b=c\\\frac{1}{1+ab}=\frac{1}{1+bc}=\frac{1}{1+ca}\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c\)

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!

11 tháng 5 2018

Áp dụng BĐT Bunhiacopxki, ta có: 

\(\left(a+b+c\right)\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)

Mà \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+1}=1\)

\(\Rightarrow\left(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right)\left(a+b+c\right)\ge1\) 

\(\Rightarrow\frac{a}{\left(ab+b+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

11 tháng 5 2018

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)

ta có  \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(H=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\)

áp dụng bất đẳng thức bunhiacopxki  ta có 

\(H\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\right)^2=1\)

\(\Rightarrow H\ge\frac{1}{a+b+c}\)

hay  \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)