K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2024

Gọi x là thương của phép chia \(\left(x\inℕ\right)\)

Theo đề bai ta có:

\(a:28=x\) (dư 14)

\(\Rightarrow a=28\cdot x+14\)

\(\Rightarrow a=14\cdot\left(2\cdot x+1\right)\)

Nhận xét:

+) Vì \(14⋮2\) nên \(14\cdot\left(2\cdot x+1\right)⋮2\)

hay \(a⋮2\)

+) Vì \(14⋮14\) nên \(14\cdot\left(2\cdot x+1\right)⋮14\)

hay \(a⋮14\)

Vậy...

3 tháng 8 2019

a) a chia hết  cho 2 nhưng ko chia hết cho 4

b) b chia hết cho 3,4 nhưng ko chia hết cho 18

5 tháng 8 2019

a) Chia hết cho 2

ko chia hết cho 4

b)

 Chia hết cho 3, 4, 18

26 tháng 10 2023

Theo đề bài

\(a-6⋮14\Rightarrow a-6⋮2;a-6⋮7\) => a-6 chẵn => a chẵn \(\Rightarrow a⋮2\)

Ta có

a chẵn \(\Rightarrow a=2k\Rightarrow a-6=2k-6⋮7\Rightarrow2\left(k-3\right)⋮7\Rightarrow k-3⋮7\)

\(\Rightarrow k=\left\{3;10;17;24....\right\}\)

\(\Rightarrow k⋮4\Rightarrow a=2k⋮4\)

10 tháng 8 2022

?

 

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4

9 tháng 8 2018

1)  Gọi thương của a khi chia cho 24 là: x

Ta có:\(a=24x+10=2\left(12x+5\right)\)\(⋮\)\(2\)

=> a chi hết cho 2

          \(a=24x+10\)

Nhận thấy:   \(24x\)\(⋮\)\(4\)nhưng   \(10\)không chia hết cho \(4\)

=> a không chia hết cho \(4\)

2)

a)  Gọi 2 số tự nhiên liên tiếp là: \(a;\)\(a+1\)

nếu: \(a=2k\)thì \(a⋮2\)

nếu:  \(a=2k+1\)thì:  \(a+1=2k+1+1=2k+2\)\(⋮\)\(2\)

Vậy trong 2 số tự nhiên liên tiếp luôn tồn tại 1 số chhia hết cho 2

b) ktra lại đề

31 tháng 12 2018

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3