Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) goi a,b,c lan luot la 3 phan cua so18 ( a,b,c>0)
theo de bai ta co:
a,b,c ti le nghich voi 3;4;6
a+b+c=18
--> a.3=b.4=c.6 va a+b+c=18
--> \(\frac{a.3}{12}=\frac{b.4}{12}=\frac{c.6}{12}\)va a+b+c=18
-> \(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)va a+b+c=18
Ap dung t/c day ti so bang nhau ta co
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)=\(\frac{a+b+c}{4+3+2}=\frac{18}{9}=2\)
-> a/4=2 =>a=4.2=8
b/3=2->b=3.2=6
c/2=2->c=2.2=4
b) tuong tu
c) goi a,b,c ( m) lan luot la do dai 3 canh cua tam giacc(a,b,c>0)
theo de bai ta co
a,b,c ti le thuan 5,13,12 va a+b+c=156
--> \(\frac{a}{5}=\frac{b}{13}=\frac{c}{12}=\frac{a+b+c}{5+13+12}=\frac{156}{30}=\frac{26}{5}\)
--> a/5 =26/5--> a=26
b/13=26/5-> b=338/5
c/12=26/5-> c=312/5
Vay do dai 3 canh lan luot la 26cm ,338/5 cm, 312/5 cm
d) Goi a,b,c (cm) lan luot la do dai 3 canh cua tam giac do ( a,b,c>0)
theo de bai ta co:
a,b,c ti le nghich 8,9,12 va a+b+c=52
-> a.8=b.9=c.12 va a+b+c=42
-> \(\frac{a.8}{72}=\frac{b.9}{72}=\frac{c.12}{72}\)va a+b+c=52
->\(\frac{a}{9}=\frac{b}{8}=\frac{c}{6}\)va a+b+c=52
tu giai
Gọi độ dài 4 tấm vải lần lượt là a,b,c,d ( a,b,c,d>0)
Theo bài ra ta có : a+b+c+d =210
Vì tấm 1 và tấm 2 tỉ lệ thuận với 2 và 3 nên a/2 = b/3 => a/16 = b/24 (1)
_____2______3____________4 và 5 ___ b/4 = c/5 => b/24 = c/30
(2) ______3______4____________6 và 7____c/6 = d/7 => c/30 = d/35(3)
Từ (1),(2) và (3) suy ra a/16=b/24=c/30=d/35 Theo tính chất của dãy tỉ số bằng nhau ta có : a/16=b/24=c/30=d/35=a+b+c+d/16+24+30+3
5= 210/105=2 (vì a+b+c+d =210) Khi đó :
a/16 =2 => a = 32
b/24 =2 => b = 48
a. ta có
\(\hept{\begin{cases}2a=3b=4c\\a+b-c=21\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\\a+b-c=21\end{cases}}}\) áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}=\frac{21}{\frac{7}{12}}=36\)\(\Rightarrow\hept{\begin{cases}a=36:2=18\\b=36:3=12\\c=36:4=9\end{cases}}\)
b. ta có : \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\\x+z-y=20\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{3}\\y=\frac{80}{3}\\z=\frac{100}{3}\end{cases}}\)
Bài 2:
Theo đề, ta có: 5a=2b=4c
=>a/12=b/30=c/15=k
=>a=12k; b=30k; c=15k
Theo đề, ta có: \(a^3+b^3+c^3=9512\)
\(\Leftrightarrow1728k^3+27000k^3+3375k^3=9512\)
\(\Leftrightarrow k^3=\dfrac{8}{27}\)
=>k=2/3
=>a=8; b=20; c=10
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a, b, c.
Theo đề ta có:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}\) và a+b+c=19
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{19}{11}\)
\(\Rightarrow a=\dfrac{19}{11}:2=\dfrac{19}{22}\left(cm\right);b=\dfrac{19}{11}:4=\dfrac{19}{44}\left(cm\right);c=\dfrac{19}{11}:5=\dfrac{19}{55}\left(cm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{6}}=\dfrac{x+y+z}{\dfrac{1}{5}+\dfrac{1}{3}+\dfrac{1}{6}}=\dfrac{168}{\dfrac{7}{10}}=240\)
Do đó: x=48; y=80; z=40
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x+y+z}{5+3+6}=\dfrac{168}{14}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.5=60\left(cm\right)\\y=12.3=36\left(cm\right)\\z=12.6=72\left(cm\right)\end{matrix}\right.\)