K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(ĐK:x\ge2013\\ PT\Leftrightarrow\sqrt{x-2013}+2\sqrt{x-2013}=3\\ \Leftrightarrow3\sqrt{x-2013}=3\\ \Leftrightarrow\sqrt{x-2013}=1\Leftrightarrow x-2013=1\\ \Leftrightarrow x=2014\left(tm\right)\)

9 tháng 11 2021

\(\sqrt{x-2013}+\sqrt{4x-8052}=3\)

\(\Leftrightarrow\sqrt{x-2013}+\sqrt{4\left(x-2013\right)}=3\)

\(\Leftrightarrow\sqrt{x-2013}+2\sqrt{x-2013}=3\)

\(\Leftrightarrow3\sqrt{x-2013}=3\)

\(\Leftrightarrow\sqrt{x-2013}=1\)

\(\Leftrightarrow x-2013=1\)

\(\Leftrightarrow x=2014\)

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

NV
6 tháng 3 2023

Ta có:

\(\dfrac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\dfrac{1}{6}\left(\dfrac{a^2+b^2+c^2}{abc}\right)\ge2\sqrt{\dfrac{1}{12}\left(\dfrac{ab+ca+ca}{abc}\right)}=\sqrt{3\left(\dfrac{ab+bc+ca}{abc}\right)}\)

Nên ta chỉ cần cm:

\(\sqrt{\dfrac{1}{3}\left(\dfrac{ab+bc+ca}{abc}\right)}\ge\dfrac{a+b+c}{3}\Leftrightarrow3\left(\dfrac{ab+bc+ca}{abc}\right)\ge\left(a+b+c\right)^2\)

Thật vậy, ta có:

\(\dfrac{3\left(ab+bc+ca\right)}{abc}=\dfrac{\left(a^2b+b^2c+c^2a\right)\left(ab+bc+ca\right)}{abc}\)

\(=\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\left(ac+ab+bc\right)\ge\left(a+b+c\right)^2\) (Bunhiacopxki)

Dấu "=" xảy ra khi \(a=b=c=1\)

Câu 5: 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Xét tứ giác AEDF có 

\(\widehat{EAF}=\widehat{AFD}=\widehat{AED}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác của \(\widehat{FAE}\)

nên AEDF là hình vuông

13 tháng 7 2023

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

13 tháng 7 2023

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

30 tháng 6 2021

Bài 2:

\(\sqrt{2x-1}=5\)

=> 2x - 1 = 25

=> 2x = 26

=> x = 13

b) \(\sqrt[3]{3x+2}=-3\)

=> 3x + 2 = -27

=> 3x = -29

=> x = -29/3

P/s: Mỗi lần chỉ đc hỏi 1 bài thôi em nehs!

30 tháng 6 2021

1. ĐK: 

a, \(x\ge\dfrac{5}{2}\)

b, \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)

2.

a,ĐK: \(x\ge\dfrac{1}{2}\)

PT\(\Leftrightarrow2x-1=25\Rightarrow x=13\left(tm\right)\)

b,ĐK: \(\forall x\in R\)

PT\(\Leftrightarrow3x+2=-27=>x=-\dfrac{29}{3}\) (tm)

3.

a,\(\sqrt{5}.\sqrt{1,2}.\sqrt{24}=\sqrt{120}.\sqrt{1,2}=12\)

b,\(\dfrac{\sqrt{4444}}{\sqrt{1111}}=\dfrac{\sqrt{4}.\sqrt{1111}}{\sqrt{1111}}=2\)

c,\(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}-\dfrac{1}{2}\sqrt{60}=\dfrac{8}{\sqrt{15}}-\sqrt{15}=-\dfrac{7}{\sqrt{15}}\)

d,\(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Bài 1:

Nếu chị nhớ không nhầm thì phải là \(\left[\begin{matrix} \frac{1}{2}\leq x< 2\\ 0< x<\frac{1}{2}\end{matrix}\right.\)

Tức là $x$ nhận các khoảng giá trị sau:

\(0< x< \frac{1}{2}\)\(x=\frac{1}{2}\)\(\frac{1}{2}< x< 2\)

Vậy có nghĩa $0< x< 2$ (rất dễ hiểu mà????)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Bài 2:

Ngoặc nhọn dùng khi muốn biểu thị hai/ nhiều phương trình/ bất phương trình đồng thời xảy ra cùng một lúc

Ngoặc vuông dùng khi muốn biểu thị cái này hoặc cái kia xảy ra.

Bài trên phải dùng ngoặc vuông là sao em? Ngoặc nhọn thường xuất hiện trong bài toán giải hệ phương trình, bất phương trình. Còn ngoặc vuông thì thường dùng kết luận nghiệm của pt/ bpt.

Kết hợp điều kiện thì dùng ngoặc nhọn. Ví dụ $\sqrt{x+1}+\sqrt{2-x}$ thì việc $x+1\geq 0$ và $2-x\geq 0$ phải đồng thời xảy ra cùng lúc.