K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 6 2021

Để hàm bậc 3 có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3-\left(2m+1\right)x^2+\left(m+1\right)x+m-1=0\) có 3 nghiệm pb

\(\Leftrightarrow\left(x-1\right)\left(x^2-2mx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-2mx-m+1=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=1-2m-m+1\ne0\\\Delta'=m^2+m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\\left[{}\begin{matrix}m< \dfrac{-1-\sqrt{5}}{2}\\m>\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

Có 19 số tự nhiên nhỏ hơn 20 thỏa mãn

30 tháng 6 2021

\(\sqrt{2}\) - \((a)^{2}\)

NV
19 tháng 11 2021

12. \(\dfrac{4\sqrt{3}}{3}\pi\)

13. \(12\pi\)

14. \(\sqrt{6}\pi a^2\)

NV
7 tháng 6 2021

4a.

\(y'=\dfrac{1}{cos^2x}+cosx-2=\dfrac{cos^3x-2cos^2x+1}{cos^2x}=\dfrac{\left(1-cosx\right)\left(1+cosx\left(1-cosx\right)\right)}{cos^2x}>0\) ; \(\forall x\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\) Hàm đồng biến trên \(\left(0;\dfrac{\pi}{2}\right)\)

4b.

\(y'=-sinx-1\le0\) ; \(\forall x\in\left(0;2\pi\right)\)

\(\Rightarrow\) Hàm nghịch biến trên \(\left(0;2\pi\right)\)

c.

\(y'=-sinx-\dfrac{1}{sin^2x}+2=\dfrac{-sin^3x+2sin^2x-1}{sin^2x}=\dfrac{\left(sinx-1\right)\left(1-sin^2x+sinx\right)}{sin^2x}\)

\(=\dfrac{\left(sinx-1\right)\left(cos^2x+sinx\right)}{sin^2x}< 0\) ; \(\forall x\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\) Hàm nghịch biến trên \(\left(0;\dfrac{\pi}{2}\right)\)

NV
7 tháng 6 2021

4d.

\(y=cosx+sinx.cosx=cosx+\dfrac{1}{2}sin2x\)

\(y'=-sinx+cos2x=-sinx+1-2sin^2x\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{\dfrac{\pi}{6};\dfrac{5\pi}{6};\dfrac{3\pi}{2}\right\}\)

Bảng biến thiên

x y' y 0 pi/6 5pi/6 3pi/2 2pi 0 0 0 + - + +

Từ BBt ta thấy hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{5\pi}{6};2\pi\right)\)

Hàm nghịch biến trên \(\left(\dfrac{\pi}{6};\dfrac{5\pi}{6}\right)\)