Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Chứng minh tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\)
Từ: \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
Lại có: \(a^2+b^2+c^2\ge ab+bc+ca\)
Hay: \(3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\)
Vì vậy: \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
\(\Rightarrow\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\Rightarrow Min_P=3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
* Dũng kỹ thuật Cô-si ngược dấu
\(P=\left(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\right)+\left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\)
+ \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)
\(\ge3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
+ \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
Do đó: \(P\ge3\). Dấu "=" \(\Leftrightarrow a=b=c=1\)
Câu a : Áp dụng BĐT Cô - si cho các số dương ta có :
\(\left\{{}\begin{matrix}\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\\\frac{b^2}{c}+c\ge2\sqrt{\frac{b^2}{c}.c}=2b\\\frac{c^2}{a}+a\ge2\sqrt{\frac{c^2}{a}.a}=2c\end{matrix}\right.\)
Cộng từng vế của BĐT ta thu được :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2a+2b+c\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c=1\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b=c=\frac{1}{3}\)
Đề phải là : \(\frac{9}{2\left(a+b+c\right)}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\left(x;y;z>0\right)\)
\(\Rightarrow\frac{a}{b^2}=\frac{y^2}{x};\frac{b}{c^2}=\frac{z^2}{y};\frac{c}{a^2}=\frac{x^2}{z};xyz=1\)
\(\frac{9}{2\left(a+b+c\right)}=\frac{9}{\frac{2\left(a+b+c\right)}{abc}}\left(abc=1\right)=\frac{9}{2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)}=\frac{9}{2\left(xy+yz+xz\right)}\)
Khi đó , ta có : \(P=\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}+\frac{9}{2\left(xy+yz+xz\right)}\)
\(=\frac{x^2}{z}+z+\frac{y^2}{x}+x+\frac{z^2}{y}+y+\frac{9}{2\left(xy+yz+xz\right)}-x-y-z\)
AD BĐT Cauchy , ta có :
\(P\ge2x+2y+2z+\frac{9}{\frac{2\left(x+y+z\right)^2}{3}}-\left(x+y+z\right)=x+y+z+\frac{27}{2\left(x+y+z\right)^2}\)
\(=\frac{x+y+z}{2}+\frac{x+y+z}{2}+\frac{27}{2\left(x+y+z\right)^2}\ge3.\sqrt[3]{\frac{27}{8}}=\frac{9}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
\(M=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(M\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}=\frac{1}{a^2+b^2+c^2}+\frac{4}{2\left(ab+ac+bc\right)}+\frac{7}{ab+ac+bc}\)
\(M\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2\left(ab+ac+bc\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=30\)
\(\Rightarrow M_{min}=30\) khi \(a=b=c=\frac{1}{3}\)
\(T=\sum\frac{a}{1+9b^2}=\sum\frac{a\left(1+9b^2\right)-9ab^2}{1+9b^2}=\sum\left(a-\frac{9ab^2}{1+9b^2}\right)\ge\sum\left(a-\frac{9ab^2}{6b}\right)=\sum\left(a-\frac{3}{2}ab\right)\)
\(T\ge a+b+c-\frac{3}{2}\left(ab+ac+bc\right)\ge a+b+c-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
Do a,b,c có vai trò hoán vị vòng quang.Ta dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{9abc}\right)+\frac{8}{9abc}\)
\(\ge\frac{4}{a^2+b^2+c^2+9abc}+\frac{8}{9abc}=\frac{4}{a^2+b^2+c^2+9abc}+\frac{4}{9abc}+\frac{4}{9abc}\)
\(\ge\frac{\left(2+2+2\right)^2}{a^2+b^2+c^2+27abc}=\frac{36}{a^2+b^2+c^2+27abc}\) (Cauchy-Schwarz dạng Engel)
\(\ge\frac{36}{a^2+b^2+c^2+\left(a+b+c\right)^3}=\frac{36}{a^2+b^2+c^2+1}+\frac{a^2+b^2+c^2+1}{36}-\frac{a^2+b^2+c^2+1}{36}\)(Cô si kết hợp giả thiết a + b + c = 1)
\(\ge2-\frac{a^2+b^2+c^2+1}{36}\)
Tới đây bí:v
câu hỏi lớp mấy đây bạn
con ben tren ngu day
là lớp 9