Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)
\(=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)
\(=35\frac{0}{23}-5\frac{7}{32}\)
\(=\frac{805}{23}-\frac{167}{32}\)
\(\frac{25760}{736}-\frac{3841}{736}\)
\(=\frac{21919}{736}=\frac{953}{32}\)
1135/23-167/32+330/23
=(1135/23-330/23)+167/32
=805/23+167/32
=35+167/32
=1120/32+167/32
=1287/32
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{63}{64}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}...\frac{7.9}{8.8}\)
\(=\frac{1.3.2.4.3.5.4.6...7.9}{2.2.3.3.4.4.5.5...8.8}\)
\(=\frac{1.9}{2.8}=\frac{9}{16}\)
=2/10+3/10+4/10+......+13/10
=\(\frac{2+3+4+......+13}{10}\)
=90/10=9
k cho mình nha
F=(3/1.8+3/8.15+...+3/106.113)-(25/50.55+25/55.60+...+25/95.100) (1)
Đặt:
A=(3/1.8+3/8.15+3/15.22+...+3/106.113)
=3/7.(1-1/8+1/8-1/15+...+1/106-1/113)
=3/7.(1-1/113)
=3/7.112/113
=336/791. (2)
B=25/50.55+25/55.60+...+25/95.100
=25/5.(1/50-1/55+1/55-1/60+...+1/95-1/100)
=5.(1/50-1/100)
=1/20 (3)
Thay (2),(3) vào (1) ta được:
F=336/791-1/20
=5929/6720.
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\frac{50}{50}}\)
A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+\frac{1}{48}+\frac{50}{47}+...+\frac{1}{2}+\frac{1}{50}\right).50}=\frac{1}{50}\)
\(A=\frac{T}{M}\)
\(M=\frac{1}{49}+1+\frac{2}{48}+1+\frac{3}{47}+1+.........+\frac{48}{2}+1+1\)
\(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+.........+\frac{50}{2}+1\)
\(=50.\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+......+\frac{1}{2}+\frac{1}{50}\right)=50.T\)
\(A=\frac{T}{50T}=\frac{1}{50}\)
A= -8/5: (1+2/3)
= -8/5:5/3
= -8/5.3/5
= -24/25
B= 7/5.15/49-22/15: 11/5
= 3/7-2/5
= 1/35
\(A=-1,6:\left(1+\frac{2}{3}\right)\)
\(A=-1,6:\frac{5}{3}\)
\(A=-\frac{24}{25}\)
\(B=1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
\(B=\frac{135}{98}-\frac{2}{3}\)
\(B=\frac{209}{294}\)
\(C=\frac{49}{1.8}+\frac{49}{8.15}+\frac{49}{15.22}+...+\frac{49}{141.148}\)
\(\Rightarrow\frac{1}{7}C=\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{141.148}\)
\(=1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{141}-\frac{1}{148}\)
\(=1-\frac{1}{148}=\frac{148}{148}-\frac{1}{148}=\frac{147}{148}\)
\(\Rightarrow C=\frac{147}{148}\div\frac{1}{7}=\frac{147}{148}.7=\frac{1029}{148}\)
Vậy \(C=\frac{1029}{148}.\)
=49(1/1.8 +1/8.15+..)
có
1/1.8= (1-1/8)
1/8.15=1/8-1/15
=> C=49*1/7*(1-1/8+1/8-1/15+...+1/141-1/148)
C=7*(1-1/148)=...
học tốt