Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{2}{33}+\frac{2}{25}+\frac{2}{19}}{\frac{3}{33}+\frac{3}{25}+\frac{3}{19}}=\frac{2\left(\frac{1}{33}+\frac{1}{25}+\frac{1}{19}\right)}{3\left(\frac{1}{33}+\frac{1}{25}+\frac{1}{19}\right)}=\frac{2}{3}\)
= \(\frac{2\left(\frac{1}{33}+\frac{1}{25}+\frac{1}{19}\right)}{3\left(\frac{1}{33}+\frac{1}{25}+\frac{1}{19}\right)}=\frac{2}{3}\)
\(\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.87}\)
\(=\frac{5-3}{3.5}+\frac{8-5}{3}+\frac{19-8}{8.19}+\frac{32-29}{19.32}+\frac{57-32}{32.57}+\frac{87-57}{57.87}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(=\frac{1}{3}-\frac{1}{87}=\frac{28}{87}\)
câu 2: \(S=\frac{25^{28^{ }}+25^{24}+...+25^2+25^2+1}{25^{28}.25^2+25^{24}.25^4+...+25^2+1}\)
rút gọn ta được
\(S=\frac{1}{25^4+1}\)
\(=\frac{4}{25}\left(\frac{5}{9}+\frac{-10}{3}\right)+\frac{52}{9}\)
\(=\frac{4}{25}.\frac{-25}{9}+\frac{52}{9}\)
\(=\frac{-4}{9}+\frac{52}{9}=\frac{16}{3}\)
\(\frac{4}{25}\cdot\frac{5}{9}+\frac{-4}{25}\cdot\frac{10}{3}+5\frac{7}{9}\)
\(=\frac{4}{45}-\frac{8}{15}+\frac{52}{9}\)
\(=\frac{4}{45}-\frac{24}{45}+\frac{260}{45}\)
\(=\frac{240}{45}=\frac{16}{3}\)
Ta có \(\frac{9}{25}x+\frac{3}{5}.\frac{9}{25}x+\frac{3}{5}.18+\frac{9}{25}x+18=x\)
=> \(\frac{9}{25}x\left(1+\frac{3}{5}+1\right)+18\left(\frac{3}{5}+1\right)=x\)
=> \(\frac{117}{125}x+28,8=x\)
=> \(x-\frac{117}{125}x=28,8\)
=> \(\frac{8}{125}x=28,8\)
=> x = 450
Vậy x = 450
\(\frac{9}{25}x+\frac{3}{5}.\frac{9}{25}x+\frac{3}{5}.18+\frac{9}{25}x+18=x\)
\(x\left(\frac{9}{25}+\frac{9}{25}+\frac{9}{25}\right).\frac{3}{5}+\frac{3}{5}.18+18=x\)
\(x.\frac{3}{5}\left(\frac{27}{25}+18\right)+18=x\)
\(x.\frac{3}{5}\left(\frac{27}{25}+\frac{450}{25}\right)+18=x\)
\(x.\frac{3}{5}.\frac{477}{25}+18=x\)
\(x.\frac{1431}{125}+\frac{2250}{125}=x\)
\(x.\frac{3681}{125}=x\)
vậy chac tui làm sai rồi
F=(3/1.8+3/8.15+...+3/106.113)-(25/50.55+25/55.60+...+25/95.100) (1)
Đặt:
A=(3/1.8+3/8.15+3/15.22+...+3/106.113)
=3/7.(1-1/8+1/8-1/15+...+1/106-1/113)
=3/7.(1-1/113)
=3/7.112/113
=336/791. (2)
B=25/50.55+25/55.60+...+25/95.100
=25/5.(1/50-1/55+1/55-1/60+...+1/95-1/100)
=5.(1/50-1/100)
=1/20 (3)
Thay (2),(3) vào (1) ta được:
F=336/791-1/20
=5929/6720.