K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

 

x^3+2y^2-4y+3=0

=>x^3=-1-2(y-1)^2<=-1

=>x<=-1

x^2+x^2y^2-2y=0

=>x^2=2y/1+y^2<=1

=>-1<=x<=1

=>x=-1

=>y=1

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$

19 tháng 11 2018

Phương trình trên <=> \(\left(x^2-4x+4\right)-\left(4y^2-4y+1\right)=0\Leftrightarrow\left(x-2\right)^2-\left(2y-1\right)^2=0\)

\(\Leftrightarrow\left(x-2-2y+1\right)\left(x-2+2y-1\right)=0\)

Em làm tiếp nhé! 

30 tháng 4 2021

hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)=2y-3\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\left(4y+1\right)\left(2y+3\right)=4y^2-9\\x^2\left(x^2-12y\right)=-4y^2+9\end{matrix}\right.\)

Cộng theo vế 2 pt ta đc:

\(x^2\left(x^2+8y^2+2y+3\right)=0\)

\(\Leftrightarrow x^2\left[x^2+7y^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y=\dfrac{3}{2}\left(tm\right)\)