Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Câu hỏi của Nguyễn Thành Nhật Anh - Toán lớp 6 - Học toán với OnlineMath
Tham khảo:
Gọi a là số tổ cần chia và a thuộc số tự nhiên khác 0
24 chia hết cho a} a thuộc Ư(24) và a nhiều nhất
108 chia hết cho a} a thuộc Ư(108) và a nhiều nhất
Vậy a là ƯCLN (24,108)
Ư(108)={1,108,2,54,3,36,4,27,6,18,9,12}
Ư(24)={1,24,2,12,3,8,4,6}
ƯCLN(24,108) = 12(tổ)
Vậy có thể chia được nhiều nhất 12 tổ
Khi đó mỗi tổ có:
Số bác sĩ là: 24:12= 2(bác sĩ)
Số y tá là: 108:12= 9(y tá)
Gọi a là số tổ cần chia và a thuộc số tự nhiên khác 0
24 chia hết cho a} a thuộc Ư(24) và a nhiều nhất
108 chia hết cho a} a thuộc Ư(108) và a nhiều nhất
Vậy a là ƯCLN (24,108)
Ư(108)={1,108,2,54,3,36,4,27,6,18,9,12}
Ư(24)={1,24,2,12,3,8,4,6}
ƯCLN(24,108) = 12(tổ)
Vậy có thể chia được nhiều nhất 12 tổ
Khi đó mỗi tổ có:
Số bác sĩ là: 24:12= 2(bác sĩ)
Số y tá là: 108:12= 9(y tá)
Gọi x (tổ) là số tổ nhiều nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(24; 108)
Ta có:
24 = 2³.3
108 = 2².3³
⇒ x = ƯCLN(24; 108) = 2².3 = 12
Vậy số tổ nhiều nhất có thể chia là 12 tổ
Gọi x (tổ) là số tổ nhiều nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(24; 108)
Ta có:
24 = 2³.3
108 = 2².3³
⇒ x = ƯCLN(24; 108) = 2².3 = 12
Vậy số tổ nhiều nhất có thể chia là 12 tổ
Gọi số tổ được chia nhiều nhất là a ( a\(\in\)N*)
Theo bài ta có :
24 chia hết cho a ; 108 chia hết cho a ; a là số lớn nhất
=> a \(\in\) ƯCLN(24;108)
24 = 23 .3
108 = 22 .33
=> ƯCLN(24;108 ) = 22 .3 = 12
=> a = 12
Vậy có thể chia đội y tế đó nhiều nhất là 12 tổ
tỉ lệ bác sĩ và y tá là :
24 : 108 = 2/9
vậy có nghĩa là : một phòng sẽ có 2 bác sĩ và 9 y tá
số tổ để chia đều là :
24 : 2 = 12 ( tổ ) ( hoặc bạn có thể lấy 108 : 9 = 12 nha , tuỳ sở thích thôi )
đáp số : 12 tổ
4:
\(54=3^3\cdot2;135=3^3\cdot5\)
=>\(ƯCLN\left(54;135\right)=3^3=27\)
Để có thể chia 54 bác sĩ và 135 y tá vào thành các tổ sao cho số bác sĩ và số y tá ở các tổ bằng nhau thì số tổ phải là ước chung của 54 và 135
=>Số tổ lớn nhất sẽ là ước chung lớn nhất của 54 và 135
=>Số tổ nhiều nhất có thể chia được là 27 tổ
5:
a: \(B=1+3^1+3^2+...+3^{2005}\)
\(=4+3^2+3^3+3^4+...+3^{2003}+3^{2004}+3^{2005}\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{2003}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{2003}\right)\)
=>B chia 13 dư 4