K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Câu 3 :

Ta có ; 3.\(24^{10}\)=3.(3.\(2^3\))\(^{10}\)=3.\(3^{10}\).\(2^{30}\)=\(3^{11}.2^{30}\)=\(3^{11}.\left(2^2\right)^{15}\)=\(3^{11}.4^{15}.\)

\(3^{11}< 4^{15}\)\(\Rightarrow\)\(3^{11}.4^{15}< 4^{15}.4^{15}\)\(\Rightarrow\)\(3.24^{10}< 4^{30}\)

\(\Rightarrow\)\(3.24^{10}< 2^{30}+3^{30}+4^{30}\)

21 tháng 2 2017

Câu 5 :

Ta có :

A = \(\frac{14-x}{4-x}\) = \(\frac{10+4-x}{4-x}\)

= \(\frac{10}{4-x}+\frac{4-x}{4-x}\)

= \(\frac{10}{4-x}+1\)

Để A đạt giá trị lớn nhất

=> \(\frac{10}{4-x}\) đạt giá trị lớn nhất

=> 4-x đạt giá trị nhỏ nhất và 4 - x > 0 (1)

Vì x \(\in\) Z

=> 4 - x \(\in\) Z (2)

Từ (1) và (2) suy ra : 4 - x = 1

=> x = 4 - 1

=> x = 3

Thay x = 3 vào A ta được :

A = \(\frac{14-3}{4-3}=\frac{11}{1}=11\)

Vậy Amax = 11 <=> x = 3

3 tháng 11 2018

Th1 : x >= 2013

Th2 : x<2013

4 tháng 11 2018

TuanMinhAms sai rồi bn

để  A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất

\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)

dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)

khi đó GTLN của A = \(\frac{2026}{2}=1013\)

p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]

31 tháng 10 2018

\(A=\frac{2026}{\left|x-2013\right|}+2\)

Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất

\(\Rightarrow\left|x-2013\right|\)nhỏ nhất

Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)

\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất

Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)

Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }

20 tháng 3 2020

1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)

Để P có GTLN thì 6-m đạt giá trị nhỏ nhất

=> 6-m=1

=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất