Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a^2+2ab+b^2-ac-bc\)
\(=\left(a+b\right)^2-c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-c\right)\)
Câu 2:
\(5x^2-5y^2-10x+10y\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+5y-10\right)\)
\(=5\left(x-y\right)\left(x+y-2\right)\)
Câu 3:
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left[\left(x-y\right)^2-4z^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Câu 4:
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
Câu 5:
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
Câu 6:
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
Câu 7:
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)
\(=3xy\left(x+y\right)\)
Câu 2:
\(C=-x+\sqrt{x}\)
\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
1: ĐKXĐ: 2-3x>=0
=>x<=2/3
2: ĐKXĐ: -3x^2>=0
=>x^2<=0
=>x=0
3: ĐKXĐ: -2023x^3>=0
=>x^3<=0
=>x<=0
4: ĐKXĐ: -2(x-5)>=0
=>x-5<=0
=>x<=5
5: ĐKXĐ: -5/2-2x>=0
=>2-2x<0
=>2x>2
=>x>1
6: ĐKXĐ: (x^2+1)(3-2x)>=0
=>3-2x>=0
=>-2x>=-3
=>x<=3/2
7: ĐKXĐ: (-x^2-1)(3-x)>=0
=>(x^2+1)(x-3)>=0
=>x-3>=0
=>x>=3
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Câu 3 :
A = 7776 . 8 - 2.243. 64
A = 62208 - 31104
A = 31104
Câu 1 :
a) \(12^5=3^5.4^5\)
b) \(20^6=4^6.5^6\)
c) \(54^3=6^3.9^3\)
Câu 2 :
a) \(3.5^{55}=3.\left(5^5\right)^{11}\)
b) \(4.3^{816}=4.\left(3^{17}\right)^{48}\)
c) \(9.8.7^{6412}=9.8.\left(7^{28}\right)^{229}\)
Câu 3 :
\(1,\left\{{}\begin{matrix}\dfrac{3}{\sqrt{y-2}}+x-2y=5\\\dfrac{1}{\sqrt{y-2}}-2x+4y=4\end{matrix}\right.\) \(\left(ĐK:y>2\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{\sqrt{y-2}}+x-2y=5\\\dfrac{1}{\sqrt{y-2}}-2\left(x-2y\right)=4\end{matrix}\right.\) Đặt : \(\left\{{}\begin{matrix}a=\dfrac{1}{\sqrt{y-2}}\\b=x-2y\end{matrix}\right.\)
Ta có Hpt trở thành : \(\left\{{}\begin{matrix}3a+b=5\\a-2b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y-2}}=2\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y-2}=1\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{4}\\x-2.\dfrac{5}{4}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)
Vậy ....
\(2,x^2-\left(2m+1\right)+m^2-m+1=0\left(1\right)\)
a, Thay m = 2 vào pt (1) có : \(x^2-5x+3=0\)
\(\Delta=5^2-4.3=13>0\Rightarrow\sqrt{\Delta}=\sqrt{13}\)
⇒ Phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{5+\sqrt{13}}{2};x_2=\dfrac{5-\sqrt{13}}{2}\)
Vậy \(S=\left\{\dfrac{5\pm\sqrt{13}}{2}\right\}\) khi \(m=2\)
b, Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow\left(2m+1\right)^2-4m^2+4m-4>0\Leftrightarrow4m^2+4m+1-4m^2+4m-4>0\Leftrightarrow8m-3>0\Leftrightarrow m>\dfrac{3}{8}\)
Vậy...
2:
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: a-b=3 và a^2+b^2=45
=>a=b+3 và (b+3)^2+b^2=45
=>b=3
=>a=6