K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Đặt t=|2x-1| mà làm

NV
29 tháng 3 2022

\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)

\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)

\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)

Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

1 tháng 8 2023

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.

 

3 tháng 1 2017

\(A\ge-1\) đạt được khi x=-1

29 tháng 12 2020

\(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P\left(x\right)=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)

\(P\left(x\right)=x-\sqrt{x}\)

Ta có : \(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{x-\sqrt{x}}{2020\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2020\sqrt{x}}=\dfrac{\sqrt{x}-1}{2020}\)

Để \(\dfrac{P\left(x\right)}{2020\sqrt{x}}min\Leftrightarrow\dfrac{\sqrt{x}-1}{2020}min\Leftrightarrow\sqrt{x}-1\) min (vì 2020 > 0)

Lại có : \(\sqrt{x}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Min\(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{-1}{2020}\Leftrightarrow x=0\)