K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

Mình giải thử ra đây sau bạn tự vẽ hình kiểm tra lại cho mình nha 

(+) Mục tiêu đi tính BMC 

Kẻ MH vg AB ; MK vg AC ; MI vuông góc với BC 

Dễ thấy BAC = 1/2 sdBC= 148 / 2 = 74 độ 

tg MHAK có H + K + A + HMK = 360 độ 

=> 90 + 90 + 74 + HMK = 360 độ 

=> HMK = 106 độ 

=> BMC = 1/2 HMK = 53 độ 

 

12 tháng 2 2016

dung do doi xi mk giai da

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Đáp án C.

3 tháng 4 2021

C nhé bạn 

Công thức của nó có tính góc BIC = 90 + BAC/2=135

20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).