Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải thử ra đây sau bạn tự vẽ hình kiểm tra lại cho mình nha
(+) Mục tiêu đi tính BMC
Kẻ MH vg AB ; MK vg AC ; MI vuông góc với BC
Dễ thấy BAC = 1/2 sdBC= 148 / 2 = 74 độ
tg MHAK có H + K + A + HMK = 360 độ
=> 90 + 90 + 74 + HMK = 360 độ
=> HMK = 106 độ
=> BMC = 1/2 HMK = 53 độ
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
Bài 2
a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp
=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)
=> HE//CA'
Vì CA' _|_ AC => HE _|_ AC
c) Gọi M là trung điểm của AB, N là trung điểm BC
Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE
Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC
Do đó trung điểm N của BC nằm trên trung trự của HE
Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC
Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định
Bài 1
bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)
bài làm
a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B
nên C , B lần lượt nhìn AO zới 1 góc =90 độ
=> ABCO nội tiếp
b) ta có tam giác ABC cân tại A do AB=AC
mà AH là đường cao
nên AH cx là đường trung tuyến
=> CH = HB
=> AO là đường trung trực của CB
c) ta có BD là đường kính của O
nên góc BED = 90 độ
xét 2 tam giác zuông BED zà ABD có
góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)
BD chung
=> tam giác BED = tam giác DBA
=> \(\frac{DE}{BE}=\frac{BD}{BA}\)
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).