Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+5=20-\left(12-7\right)\)
\(\Rightarrow x+5=20-5\)
\(\Rightarrow x+5=15\)
\(\Rightarrow x=15-5\)
\(\Rightarrow x=10\)
b) \(15-\left(3+2x\right)=2^2\)
\(\Rightarrow3+2x=15-4\)
\(\Rightarrow3+2x=11\)
\(\Rightarrow2x=11-3\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=\dfrac{8}{2}\)
\(\Rightarrow x=4\)
c) \(-11-\left(19-x\right)=50\)
\(\Rightarrow19-x=-11-50\)
\(\Rightarrow19-x=-61\)
\(\Rightarrow x=61+19\)
\(\Rightarrow x=80\)
d) \(159-\left(25-x\right)=43\)
\(\Rightarrow25-x=159-43\)
\(\Rightarrow25-x=116\)
\(\Rightarrow x=25-116\)
\(\Rightarrow x=-91\)
e) \(\left(79-x\right)-43=-\left(17-52\right)\)
\(\Rightarrow\left(79-x\right)-43=52-17\)
\(\Rightarrow79-x-43=35\)
\(\Rightarrow36-x=35\)
\(\Rightarrow x=1\)
f) \(\left(7+x\right)-\left(21-13\right)=32\)
\(\Rightarrow7+x-8=32\)
\(\Rightarrow x-1=32\)
\(\Rightarrow x=32+1\)
\(\Rightarrow x=33\)
g) \(-x+20=-15+8+13\)
\(\Rightarrow-x+20=6\)
\(\Rightarrow x=20-6\)
\(\Rightarrow x=14\)
h) \(-\left(-x+13-142\right)+18=55\)
\(\Rightarrow x-13+142+18=55\)
\(\Rightarrow x+147=55\)
\(\Rightarrow x=55-147\)
\(\Rightarrow x=-92\)
2.
a, x-13=-46
=>x=(-46)+13
=>x=33
b, 4x-6=22
=>4x=22+6
=>4x=28
=>x=28:4
=>x=7
3.
a, 32=25
48=24.3
=>ƯCLN(32,48)=24=16
16=24
72=23.32
=>ƯCLN(16,72)=23=8
b,
24=23.3
60=22.3.5
=>BCNN(24,60)=23.3.5=120
72=23.32
180=22.32.5
=>BCNN(72,180)=23.32.5=360
Câu 1:
a. $=-(35+65)+(22+88)=-100+110=110-100=10$
c. $=58(26+74)=58.100=5800$
b. $=29(38+63-1)=29.100=2900$
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
a) \(\left(x+22\right)\left(x-13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+22=0\\x-13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-22\\x=13\end{cases}}}\)
Vậy \(x\in\left\{-22;13\right\}\)
b) \(\left(-x+25\right)\left(32-x\right)=0\)
\(\Leftrightarrow\left(25-x\right)\left(32-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}25-x=0\\32-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=25\\x=32\end{cases}}}\)
Vậy \(x\in\left\{25;32\right\}\)
a)\(\left(x+22\right)\left(x-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+22=0\\x-13=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-22\\x=13\end{cases}}}\)
b) \(\left(-x+25\right)\left(32-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+25=0\\32-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=25\\x=32\end{cases}}}\)
hok tốt!!
\(3^2.x+2^2.x=26.2^2-13\\ =>x\left(3^2+2^2\right)=26.4-13\\ =>13x=104-13\\ =>13x=91\\ =>x=91:13\\ =>x=7\)