Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2: A=(-a-b+c)-(-a-b-c)-2b
A= -a-b+c+a+b+c+2b=2b+2c=2(b+c) (1)
Thay b=-1,c=-2 vào (1) ta có
A=2.(-1-2)=2.(-3)=-6
Mình nghĩ là ko cần cho a= bn đâu
Câu 1 bạn có thể ghi rõ đề ra ko (đặc biệt là câu a )
a) \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{-1}{3}\)
\(\Rightarrow x=\dfrac{-1}{3}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{-2}{3}\)
b)\(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Rightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{-11}{20}\)
c) \(\dfrac{3}{35}-\left(\dfrac{3}{5}+x\right)=\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{3}{35}-\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{-1}{5}\)
\(\Rightarrow x=\dfrac{-1}{5}-\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{-4}{5}\)
d)\(\dfrac{2}{3}.x=\dfrac{4}{27}\)
\(\Rightarrow x=\dfrac{4}{27}:\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{2}{9}\)
e) \(\dfrac{-3}{5}.x=\dfrac{21}{10}\)
\(\Rightarrow x=\dfrac{21}{10}:\dfrac{-3}{5}\)
\(\Rightarrow x=\dfrac{-7}{2}\)
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
Bài 1:
\(a,\left(a+b-c\right)-\left(b-c-d\right)\)
\(=a+b-c-b+c+d\)
\(=a+d\)
\(b,-\left(a-b+c\right)+\left(a-b+d\right)\)
\(=-a+b-c+a-b+d\)
\(=-c+d\)
\(c,\left(a+b\right)-\left(-a+b-c\right)\)
\(=a+b+a-b+c\)
\(=2a+c\)
\(d,-\left(a+b\right)+\left(a+b+c\right)\)
\(=-a-b+a+b+c\)
\(=c\)
Bài 3 :
\(a,15-\left(4-x\right)=6\)
\(4-x=15-6\)
\(4-x=9\)
\(x=4-9\)
\(x=-5\)
\(b,-30+\left(25-x\right)=-1\)
\(25-x=-1+30\)
\(25-x=29\)
\(x=25-29\)
\(x=-4\)
\(c,x-5=-1\)
\(x=-1+5\)
\(x=4\)
\(d,x-4=-10\)
\(x=-10+4\)
\(x=-6\)
\(e,x+3=-8\)
\(x=-8-3\)
\(x=-11\)
\(g,x+6=0\)
\(x=-6\)
Câu 1:
A, (a+b-c)-(b-c-d)
= a+b-c-b+c+d
= a+(b-b)+(c-c)
= a
B, -(a-b+c)+(a-b+d)
= -a+b-c+a+b+d
= (a-a)+(b+b)+d-c
= 2b+d-c
C, (a+b)-(-a+b-c)
= a+b+a-b+c
= (a+a)+(b-b)+c
= 2a+c
D, -(a+b)+(a+b+c)
= -a-b+a+b+c
= (-a+a)+(b-b)+c
= c
=
a) x - 1/2 = 3/5
x = 3/5 + 1/2
x = 11/10
b) x - 1/2 = -2/3
x = -2/3 + 1/2
x = -1/6
c) 2/5 - x = 0,25
x = 2/5 - 0,25
x = 2/5 - 1/4
x = 3/20
a, \(\left(x+1982+172\right)+\left(-1982\right)-162\)
\(=x+1982+172-1982-162=x+10\)
b, \(2x-\left[\left(x+b-c\right)-\left(x+a-2\right)\right]+\left(2b+c-3\right)\)
\(=2x-\left(x+b-c-x-a+2\right)+2b+c-3\)
\(=2x-\left(-a+b-c+2\right)+2b+c-3\)
\(=2x+a-b+c-2+2b+c-3=2x+a+b+2c-5\)
c, \(235+x-\left(65+x\right)+x=235+x-65-x+x=170+x\)
d, \(\left(a+b+1\right)-\left(a-c+1\right)-\left(b+c\right)\)
\(=a+b+1-a+c-1-b-c=0\)
e, \(a-\left(b+c-d\right)+\left(-d\right)-a=a-b-c+d-d-a=-b-c\)
f, \(\left(a+b-c-2019\right)-\left(c-b+a-2020\right)+c\)
\(=a+b-c-2019-c+b-a+2020+c=2b+1\)
uyyertyuADHCDFGGJ NCGHHHSJGAKFGSAHXCGGZJDSJKS