K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

số chính phương là số nguyên có căn bậc 2 là 1 số nguyên hay nói cách khác số chính phương là bình phương (lũy thừa bậc 2) của 1 số nguyên khác . Ví dụ :4 = 2^2 , 9 = 3^2

24 tháng 9 2017

mị lớp > chị nên đừng hỏi tui cái này

27 tháng 9 2023

Câu 1:

Ta có: \(81=9^2\)

Nên 81 là số chính phương

⇒ Chọn B

Câu 2: 

Ta có: \(1=1^2\)

\(0=0^2\)

\(100=10^2\)

Nên \(125\) không phải là số chính phương

⇒ Chọn D 

29 tháng 2

THANK YOU NHA

 

16 tháng 10 2020

1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361

9 tháng 8 2016

Đặt \(A=x^2\) , \(B=y^2\) \(C=z^2\)\(D=t^2\)(x,y,z,t là các số tự nhiên)

Ta có : \(\left(A+B\right)\left(C+D\right)=\left(x^2+y^2\right)\left(z^2+t^2\right)\)

\(=x^2z^2+x^2t^2+y^2z^2+y^2t^2\)

\(=\left(x^2z^2+2xyzt+y^2t^2\right)+\left(x^2t^2-2xyzt+y^2z^2\right)\)

\(=\left(xz+yt\right)^2+\left(xt-yz\right)^2\)

là tổng hai số chính phương . (đpcm)

9 tháng 8 2016

Đặt a,b,c,d:

\(a=x^2\)

\(b=y^2\)

\(c=m^2\)

\(d=n^2\)

\(\Rightarrow\left(a+b\right)\left(c+d\right)=\left(x^2+y^2\right)\left(m^2+n^2\right)\)

\(=\left(xm-yn\right)^2+\left(xn+ym\right)^2\)

=> đpcm

8 tháng 8 2016

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

 Vậy n=40

8 tháng 8 2016

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n8
n8              (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n5                (2)
Từ (1) và (2)n40
Vậy n=40k thì ... 

3 tháng 4 2021

làm cách lớp 8 dc ko bạn

25 tháng 8 2016

khó quá

25 tháng 8 2016

khó quá các bạn nhỉ

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi