Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x-1 là bội của x+2
=>\(x-1⋮x+2\)
=>\(x+2-3⋮x+2\)
=>\(-3⋮x+2\)
=>\(x+2\inƯ\left(-3\right)\)
=>\(x+2\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-1;-3;1;-5\right\}\)
b: 3x+1 là ước của x+2
=>\(x+2⋮3x+1\)
=>\(3x+6⋮3x+1\)
=>\(3x+1+5⋮3x+1\)
=>\(5⋮3x+1\)
=>\(3x+1\in\left\{1;-1;5;-5\right\}\)
=>\(3x\in\left\{0;-2;4;-6\right\}\)
=>\(x\in\left\{0;-\dfrac{2}{3};\dfrac{4}{3};-2\right\}\)
mà x nguyên
nên \(x\in\left\{0;-2\right\}\)
c: x+3 là ước của 2x+1
=>\(2x+1⋮x+3\)
=>\(2x+6-7⋮x+3\)
=>\(-7⋮x+3\)
=>\(x+3\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{-2;-4;4;-10\right\}\)
d: 3x+2 là bội của 2x-1
=>\(3x+2⋮2x-1\)
=>\(6x+4⋮2x-1\)
=>\(6x-3+7⋮2x-1\)
=>\(7⋮2x-1\)
=>\(2x-1\in\left\{1;-1;7;-7\right\}\)
=>\(2x\in\left\{2;0;8;-6\right\}\)
=>\(x\in\left\{1;0;4;-3\right\}\)
\(9^{2n}-6=81^n-6\)
\(\text{Vì }\orbr{\begin{cases}81^n⋮9\\6⋮9̸\end{cases}}\Rightarrow81^n-6⋮9̸\)
\(\Rightarrow9^{2n}-6⋮9̸\)
\(⋮̸\)là không chia hết
\(\frac{4}{7}x-\frac{2}{3}=\frac{1}{5}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{1}{5}+\frac{2}{3}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{3}{15}+\frac{10}{15}\)
\(\Leftrightarrow\frac{4}{7}x=\frac{13}{15}\)
\(\Leftrightarrow x=\frac{13}{15}:\frac{4}{7}=\frac{13}{15}\cdot\frac{7}{4}=\frac{91}{60}\)
\(B=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right).....\left(\frac{1}{81}-1\right)\cdot\left(\frac{1}{100}-1\right)\)
\(B=\frac{-3}{4}\cdot\frac{-8}{9}....\frac{-80}{81}\cdot\frac{-99}{100}\)
\(B=-\left(\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\cdot\frac{99}{100}\right)\)
\(B=-\left(\frac{3\cdot8\cdot15\cdot24\cdot....\cdot63\cdot80\cdot99}{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot\cdot\cdot9^2\cdot10^2}\right)\)
\(B=-\left(\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot\cdot8\cdot10\cdot9\cdot11}{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot\cdot9^2\cdot10^2}\right)\)
\(B=-\frac{11}{2\cdot10}\)
\(B=\frac{-11}{20}\)
\(B=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)
\(B=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-99}{10^2}\)
\(B=-\left(\frac{3}{2^2}.\frac{8}{3^2}...\frac{99}{10^2}\right)\)(có 9 thừa số, mỗi thừa số là âm nên kết quả là âm)
\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)
\(B=-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)
\(B=-\left(\frac{1}{10}.\frac{11}{2}\right)\)
\(B=-\frac{11}{20}\)
(1+[-3])+(5+[-7])+...+(97+[-99])+101
= (-2) +(-2)+..+(-2)+101
=(-2).25+101
=-50+101
=51
tick đấy
\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
a) \(\left(x+3\right)\left(y-1\right)=3=\left(-3\right).\left(-1\right)=\left(-1\right).\left(-3\right)=3.1=1.3\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn đề bài:
\(\left(-6;0\right);\left(-4;-2\right);\left(-2;4\right);\left(0;2\right)\)
b) \(\left(2x+1\right)\left(y-2\right)=-12=\left(-12\right).1=\left(-6\right).2=\left(-4\right).3=\left(-3\right).4=\left(-2\right).6=\left(-1\right).12=1.\left(-12\right)=3.\left(-4\right)=4.\left(-3\right)=6.\left(-2\right)=12.\left(-1\right)\)
Vậy ta tìm được các cặp giá trị \(\left(x;y\right)\) thỏa mãn yêu cầu:
\(\left(-3;4\right);\left(-2;6\right);\left(-1;14\right);\left(0;-10\right);\left(1;-2\right)\)