Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình giải số dư bằng 1, các bạn có số dư bằng bao nhiêu?
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
nên A chia 7 dư 3
thấy: 2^k + 2^(k+1) + 2^(k+2) = (1+2+4).2^k = 7.2^k chia hết cho 7
lại thấy trong A có 2003 số hạng, ta bỏ ra 2 số hạng đầu, còn lại 2001 số hạng: chia hết cho 3
A = 1+2 + (2^2+2^3+2^4) + (2^5+2^6+2^7) +..+ (2^2000+2^2001+2^2002)
A = 3 + 7.2^2 + 7.2^5 +..+ 7.2^2000
=> A chia 7 dư 3
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
nên A chia 7 dư 3
\(1+2+2^2+...+2^{2002}\) = 1 + 2 + B
Đặt B = \(2^2+2^3+...+2^{2002}\)
\(=2^2\left(1+2+2^2\right)...+2^{2000}\left(1+2+2^2\right)\)
\(=2^2.7+...+2^{2000}.7\)
\(=7\left(2^2+...+2^{2000}\right)⋮7\)
=> B + 1 + 2 = B + 3
Vì B chia hết cho 7 mà 3 chia 7 dư 3
Vậy A chia 7 dư 3
a. x + 3 chia hết cho x - 4
=> x - 4 + 7 chia hết cho x - 4
Vì x - 4 chia hết cho x - 4 nên để x - 4 + 7 chia hết cho x - 4 thì 7 chia hết cho x - 4
=> x - 4 thuộc Ư(7) = {1;-1;7;-7}
x-4 | 1 | -1 | 7 | -7 |
x | 5 | 3 | 11 | -3 |
Vậy x = {5;3;11;-3}
b. x - 5 là bội của 7 - x
=> x - 5 chia hết cho 7 - x
Mà 7 - x chia hết cho 7 - x
=> (x - 5) + (7 - x) chia hết cho 7 - x
=> x - 5 + 7 - x chia hết cho 7 - x
=> 2 chia hết cho 7 - x
=> 7 - x thuộc Ư(2) = {1;-1;2;-2}
7 - x | 1 | -1 | 2 | -2 |
x | 6 | 8 | 5 | 9 |
Vậy x = {6;8;5;9}
c. 2x + 7 là ước của 3x - 2
=> 3x - 2 chia hết cho 2x + 7
=> 2(3x - 2) - 3(2x + 7) chia hết cho 2x + 7
=> 6x - 4 - 6x - 21 chia hết cho 2x + 7
=> -25 chia hết 2x + 7
=> 2x + 7 thuộc Ư(-25) = {1;-1;5;-5;25;-25}
2x + 7 | 1 | -1 | 5 | -5 | 25 | -25 |
x | -3 | -4 | -1 | -6 | 9 | -16 |
Vậy x = {-3;-4;-1;-6;9;-16}
Vì a chia 7 dư 5 => a=7m+5 \(\left(m\in N\right)\)
b chia 7 dư 2 => b=7n+2 \(\left(n\in N\right)\)
a) \(a+b=7n+2+7m+5=7n+7m+7=7.\left(m+n+1\right)\)
ta có: \(7⋮7\Rightarrow7.\left(m+n+1\right)⋮7\left(v\text{ì}m,n\in N\right)\)
\(\Rightarrow\left(a+b\right)⋮7\)
=> (a+b):7 dư 0
Vậy (a+b):7 dư 0
b) \(a.b=\left(7m+5\right).\left(7n+2\right)=49mn+14m+35n+10=7.\left(7mn+2m+5n+1\right)+3\)
Có \(\hept{\begin{cases}7.\left(7mn+2m+5n+1\right)⋮7\left(v\text{ì}7⋮7;m,n\in N\right)\\3:7=0d\text{ }\text{ư}3\end{cases}}\)
\(\Rightarrow7.\left(7mn+2m+5n+1\right)+3:7d\text{ư}3\)
\(\Rightarrow a.b:7d\text{ư}3\)
Vậy a.b:7 dư 3
Tham khảo nhé~
A= 1+2+2^2+...+2^2001+2^2002
A= (1+2+2^2)+(2^3+2^4+2^5)+...+(2^2010+2^2001+2^2002)
A=7+2^3*(1+2+2^2)+...+2^2010*(1+2+2^2)
A=7*(1+2^3+...+2^2010) chia hết cho 7
Bài 1:
a) 3500 = 3100.5 = (35)100 = 243100
5300 = 5100.3 = (53)100 = 125100
Vì 243100 > 125100 nên 3500 > 5300
b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
nên A chia 7 dư 3