Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)
\(16^{10}+32=160000000000+32.\)
\(=160000000032\)
Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.
mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)
b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)
Vậy ........
Bên mình có 8 người bị mắc corona ròi
\(Q\left(x\right)\)chia hết cho 3 với mọi giá trị của x nguyên đúng ko bạn ?
Phương Bùi Mai bn tham khảo nhé:
Tổng A có 100 số hạng, nhóm thành 25 nhóm, mỗi nhóm có 4 số hạng, tổng chia hết cho 120
\(A=1-3+3^2+3^2+.....+3^{99}+3^{100}\)
\(A=3-3^2+3^3-....3^{98}+3^{99}+3^{100}\)
Cộng từng vế ta được:
\(A=1-3^{100};A=1-3^{100}:4\)
Vậy: A chia hết cho 120
thaks bạn nha