Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MIN\)và \(\Delta QIP\)có:
IM = IQ (gt)
\(\widehat{MIN}=\widehat{QIP}\left(gt\right)\)
NI = PI (gt)
\(\Rightarrow\Delta MIN=\Delta QIP\left(c.g.c\right)\)
Bạn có thể vẽ hình câu b mình xem được không?
Bạn có thể tham khảo ơn đây nhé :
https://olm.vn/hoi-dap/detail/238592362678.html
Ta có : HE là tia đối của tia HM
=> H, M, E thẳng hàng
góc BHE + góc NHB + góc MHE = 180 độ
Xét tam giác AMH và tam giác BEM có :
+ MA = EB ( gt )
+ góc HMA = góc BEH ( SLT )
+ MH = ME( gt )
=> tam giác AMH = tam giác BEM (c.g.c)
=> góc BHE = góc AHM ( 2 góc tương ứng )
mà : góc BHE + góc NHB + góc MHE = 180 độ
=> góc MHB + góc BHE = 180 độ
=>AHB = 180 độ
=> 3 điểm A, H, B thẳng hàng
a) Xét △MIQ và △NIP ta có:
IM=IN (gt)
∠MIQ=∠NIP(2 góc đối đỉnh)
MQ=MP (gt)
Vậy : △MIQ = △NIP (c.g.c)
Vậy: QM = NP (2 cạnh tương ứng)
⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy : QM // NP
b) Xét △MEK và △PEN ta có:
EM = EP (gt)
∠MEK =∠PEN (2 góc đối đỉnh)
EK = EN (gt)
⇒ △MEK = △PEN (c.g.c)
⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy: MK//PN
c) Từ câu a và câu b, ta có : QM//NP và MK//PN
Vậy M,Q,K thẳng hàng.(1)
Ta có:△MEK=△PEN (theo câu b)
⇒ MK=NP (2 cạnh tương ứng)
⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)
Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.
Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!
a: Xét ΔMIP và ΔKIN có
IM=IK
\(\widehat{MIP}=\widehat{KIN}\)
IP=IN
Do đó: ΔMIP=ΔKIN
c: Xét ΔMEK có
H là trung điểm của ME
I là trung điểm của MK
Do đó: HI là đường trung bình
=>HI//EK và HI=EK/2
Xét ΔMPE có
PH là đường cao
PH là đường trung tuyến
Do đó: ΔMPE cân tại P
Suy ra: PM=PE(1)
Xét tứ giác MNKP có
I là trung điểm của MK
I là trung điểm của NP
Do đó: MNKP là hình bình hành
Suy ra: NK=MP(2)
Từ (1) và (2) suy ra NK=PE