Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{101}+\dfrac{2}{101}+\dfrac{3}{101}+...+\dfrac{99}{101}+\dfrac{100}{101}\)
\(=\dfrac{1+2+3+...+99+100}{101}\)
Đặt \(B=1+2+3+...+99+100\)
Số số hạng của B là:
\(\left(100-1\right):1+1=100\left(số\right)\)
Tổng của B:
\(\dfrac{\left(1+100\right)\times100}{2}=5050\)
\(\Rightarrow A=\dfrac{1+2+3+...+99+100}{101}\)
\(=\dfrac{B}{101}\)
\(=\dfrac{5050}{101}=50\)
Vậy \(A=50\)
101.(-162)+38(-101)+101
= 101.(-162)-38.101+101=101.(-162-38+1)=101.(-199)=-20099
\(M=\frac{\left(101+1\right)101}{2}:\left[\left(101-100\right)+.....+\left(3-2\right)+1\right]\)
\(\Rightarrow M=\frac{102.101}{2}:\left(1+1+...+1\right)\)
\(\Rightarrow M=\frac{102.101}{2}:51\)
\(\Rightarrow M=\frac{51.2.101}{51.2}\)
\(\Rightarrow M=101\)
\(M=\left(101+100+.....+2+1\right):\left(101-100+.........-2+1\right)\)
\(M=\frac{\left(101+1\right).101}{2}:\left\{\left(101-100\right)+.......+\left(3-2\right)+1\right\}\)
\(M=5151:\left\{1+1+......+1+1\right\}\)
\(M=5151:51\\ M=101\)
Giải:
Ta có: 1 + 2 + 3 + 4 + ... + 100 + 101 = ( 100 +1 ) + (99 + 2 ) +... + ( 50 + 51 ) + 101 = 101 + 101 +... + 101 + 101 = 101. 51
1 - 2 + 3 - 4 + ... - 100 +101 = 1+ ( 3 - 2) + ( 5 - 4 ) +... + ( 101 - 100 ) = 1 + 1 +... + 1 = 1. 51
=> \(\frac{1+2+3+4+5+...+100+101}{1-2+3-4+5-...-100+101}=\frac{51.101}{51.1}=\frac{101}{1}=101\)
A = \(\frac{1}{101}\) + \(\frac{2}{101}\) + \(\frac{3}{101}\) + ... + \(\frac{101}{101}\)
A = \(\frac{1+2+3+...+101}{101}\)
Số các số hạng của tử số là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tử số của A là :
( 101 + 1 ) x 101 : 2 = 5151
Vậy A = \(\frac{5151}{101}\) = \(51\)
A=1/101+2/101+3/101+....+101/101
=> A = 1+2+3+...+101/101
=> A = 5151/101
=> A = 51.
Mình giải thích chỗ 1+2+3+...101 nha.
Số số hạng là:
101 - 1 + 1 = 101 ( số )
Tổng là:
[(101+1).101]/2 = 5151
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)