Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)- \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+ \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{11}\) = \(x\) - \(\dfrac{5}{13}\)
\(x-\dfrac{5}{13}=\dfrac{1}{11}\)
\(x\) = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)
\(x\) = \(\dfrac{68}{143}\)
Ta có: A=(1-1/2)...........................
Mà các tử có hiệu bằng 0
suy ra: Phân số có tử bằng 0
suy ra: A=0
Vậy A=0
Từ GT ; ta có : \(\left(x-1\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=224\)
\(\Rightarrow\left(x-1\right).\dfrac{2}{9}=224\)
\(\Rightarrow\left(x-1\right)=1008\)
\(\Rightarrow x=1009\)
Vậy ...
a)A=1/20+1/30+1/42+1/56+1/72+1/90+1/110
= 1/4*5 + 1/5*6 + 1/6*7 + ... + 1/10*11
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
= 1/4 - 1/11
= 7/44
b)B=1/2+1/4+1/6+1/8+...+1/512+1/1024
B = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^9 + 1/2^10
2B = 1 + 1/2 + 1/2^2 + ... + 1/2^10 + 1/2^11
2B - B = B = 1 + 1/2^11
mình biến đởi phần trong |......| rồi bạn thay vào nha
1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132
=1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 +1/ 10.11
=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11
=1/5 - 1/11=11/55 - 5/55 =6/ 55
thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha
chúc hok tốt
=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3
=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3
=>(1/5-1/12)-x=2/3
=>7/60-x=2/3
=>x=7/60-2/3
=>x=-11/20
ta có
x-1/12+x-1/20+x-1/30+x-1/42+x-1/56+x-1/72=16/9
=>x-1(1/12+1/20+1/30+1/42+1/56+1/72)=16/9
=>x-1(1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9)=16/9
=>x-1(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)=16/9
=>x-1*(1/3-1/9)=16/9
=>(x-1)*2/9=16/9
=>x-1=9
=>x=8
kb và like cho mình nhé
b: =8,12(6+8-4)=8,12x10=81,2
a: \(A=\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{10\cdot11}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
=1/4-1/11=7/44
c: =>0,2a+0,4a=12
=>0,6a=12
hay a=20