K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

So sánh

 D, a/b và a+201/b+201

7 tháng 5 2018

mik làm câu A thôi nha

ta có :

1 - 2009/2010 = 1/2010

1 - 2010/2011 = 1/2011

Phần bù nào bé thì phân số đó lớn .

Vì 1/2010 > 1/2011

Nên 2009/2010 > 2010/2011

7 tháng 5 2018

Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ) 
Để so sánh hai phân số, ta so sánh các hiệu. 

\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)

Ta có :

\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)

\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

Ta thấy :

\(\frac{1}{2010}>\frac{1}{2011}\)

Hay :

\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)

Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)

9 tháng 5 2018

a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

=2.5

=10

26 tháng 7 2016

\(\frac{ }{ }\frac{ }{ }\)

2009/2010=1-1/2010<1-1/2011=2010/2011

vậy 2009/2010<2010/2011

3^400=(3^4)^100=81^100>64^100=4^300

=>1/3^400<1/4^300

Vậy 1/3^400<1/4^300

 

28 tháng 3 2018

2.  a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)

     \(37^{75}=\left(3^3\right)^{25}=27^{25}\)

Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)

c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)

      \(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)

Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)

27 tháng 4 2020

Gyvyghghgbhg

17 tháng 5 2018

a)

Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)

Cần nhớ:

Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

Và tương tự:  \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

b)Ta có:

 \(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)

\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)

Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)

c) Ta có:

\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)

\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)

=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

14 tháng 4 2015

nghịch đảo 2 phân số ta có:   \(\frac{2010}{2009}v\text{à}\frac{2011}{2010}\)

 phân tích ra ta có:\(\frac{2010}{2009}=1+\frac{1}{2009}\)

                            \(\frac{2011}{2010}=1+\frac{1}{2010}\)

Vì \(\frac{1}{2009}>\frac{1}{2010}\)

nên \(\frac{2009}{2010}

14 tháng 4 2015

a/ Do : 2009/2010 > 2009/2011, 2009/2011 < 2010/2011 nên 2009/2010 < 2010/2011