K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

2.Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

Vậy c=0

20 tháng 2 2017

BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)

f(2)=2a+b=4 (2)

Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3

Với a=3 thay vào (1) ta có: 3+b=1 => b=-2

Vậy a=3, b=-2

22 tháng 2 2017

BT1: 20152014 có tận cùng là 5

    20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4

=> 20152014-20142015 có tận cùng là ...5-...4=...1 

BT2: f(1)=a.1+b=1  (1)

       f(2)=a.2+b=4    (2)

Trừ (2) cho (1) => a=3

Thay a=3 vào (1) => b=-2

ĐS: a=3; b=-2

23 tháng 2 2017

Sao ko ai trả lời vậy?! Bộ câu của mình khó quá ak???

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

21 tháng 3 2019

Bổ sung :

➤ Bài 1 :

c/ Tính f(5)

21 tháng 4 2019

Sửa bài 2 : Tính giá trị của biểu thức M = 4 (a - b) (b - c) = (c - a)2.

13 tháng 2 2016

1) a=2 ,b=3 Ia+bI=5

13 tháng 2 2016

Từng bài 1 thôi bn

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8