Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=a+\frac{1}{36a}\)
Ta có : \(9t^2-6t+1=0\)
\(\Leftrightarrow\left(3t-1\right)^2=0\)\(\Leftrightarrow t=\frac{1}{3}\)
\(\Leftrightarrow a+\frac{1}{36a}=\frac{1}{3}\)
\(\Leftrightarrow\frac{36a^2+1}{36a}=\frac{1}{3}\)
\(\Leftrightarrow36a^2+1=12a\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\left(6a-1\right)^2=0\)
\(\Rightarrow a=\frac{1}{6}\)
\(\Rightarrow\frac{1}{a}=6\)
a/b+b/a-ab
=a/b+b/a-(a-b)
=a/b+b/a-a+b
=a/b-a+b/a+b
=(a-ab)/b+(b+ab/a)
=(a-a+b)/b-((b+a-b)a
=1+1
=2
vì a,b khác 0 => a.b khác 0
ta có: a/b + b/a - ab
=(a^2+b^2-a^2b^2)/ab
=[(a-b)^2+2ab-a^2b^2]/ab
=(a^2b^2+2ab-a^2b^2)/ab=2ab/ab=2 (do a-b=ab)
Đặt \(a+\frac{1}{36a}=x\)
pt đã cho trở thành \(9x^2-6x+1=0\)
\(\Leftrightarrow9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)=0\)
\(\Leftrightarrow9\left(x-\frac{1}{3}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}=a+\frac{1}{36a}=\frac{36a^2+1}{36a}\)
\(\Leftrightarrow12a=36a^2+1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\)
\(\Leftrightarrow6a-1=0\)
\(\Leftrightarrow a=\frac{1}{6}\Rightarrow a=6\)
Chúc bạn học tốt !!!
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
\(x^2+2y^2-3xy=0\)
\(\Rightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)
\(\Rightarrow\left(x-2y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\)
x = 2y thì \(A=\frac{2018.2y.y}{\left(2y\right)^2+2y^2}=\frac{4036y^2}{6y^2}=\frac{2018}{3}\)
x = y thì \(A=\frac{2018.y.y}{y^2+y^2}=\frac{2018y^2}{2y^2}=1009\)
Vậy \(\orbr{\begin{cases}A=\frac{2018}{3}\\A=1009\end{cases}}\)
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
\(\left[3\left(a+\dfrac{1}{36a}\right)-1\right]^2=0\)
\(\Leftrightarrow3\left(a+\dfrac{1}{36a}\right)=1\)
\(\Leftrightarrow36a^2-12a+1=0\)
\(\Leftrightarrow\left(6a-1\right)^2=0\Rightarrow6a=1\)
\(\Rightarrow a=\dfrac{1}{6}\)
vay \(\dfrac{1}{a}=6\)
6