K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Do (P) đi qua A(2;1) nên ta có :

1 = 4a + 4 + 5

<=> 1 = 4a + 9

<=> a = -2

Vậy a = -2 là giá trị cần tìm

1 tháng 12 2021

\(ĐK:a\ne0\)

\(A\left(0;1\right)\in\left(P\right)\Leftrightarrow c=1\)

(P) có đỉnh trên trục hoành \(\Leftrightarrow\Delta=b^2-4ac=0\Leftrightarrow b^2=4ac=4a\Leftrightarrow a=\dfrac{b^2}{4}\)

\(B\left(2;1\right)\in\left(P\right)\Leftrightarrow4a+2b+c=1\\ \Leftrightarrow b^2+2b=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\Leftrightarrow a=0\left(ktm\right)\\b=-2\Leftrightarrow a=1\left(tm\right)\end{matrix}\right.\)

Vậy \(a+b+c=1-2+1=0\)

17 tháng 11 2023

a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)

b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)

c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)

d: Hoành độ đỉnh là 2 nên -b/2a=2

=>b=-4a(1)

Thay x=3 và y=1 vào (P), ta được:

\(a\cdot3^2+b\cdot3+c=1\)

=>\(9a+3b+c=1\left(2\right)\)

Thay x=-1 và y=2 vào (P), ta được:

\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)

=>a-b+c=2(3)

Từ (1),(2),(3), ta có hệ phương trình:

\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)

24 tháng 4 2019

Đáp án B

1 tháng 11 2018

parabol P:y=\(a^2+2x+c\) đi qua A(2;3) và (4:0) nên:

\(\left\{{}\begin{matrix}a\ne0\\b=2\\a\cdot4+2\cdot2+c=3\\a\cdot16+2\cdot4+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\b=2\\4a+c=-1\\16a+c=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\dfrac{7}{12}\left(TM\right)\\c=\dfrac{4}{3}\end{matrix}\right.\\ \Rightarrow d:y=-\dfrac{7}{12}x^2+2x+\dfrac{4}{3}\)

\(\)

21 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}4a+c=2\\-\dfrac{b}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-4a=2-4\cdot\left(-1\right)=6\\a=-1\end{matrix}\right.\)

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

NV
7 tháng 10 2019

1/ Do (P) qua A \(\Rightarrow c=1\) (thay tọa độ A vào pt (P) thôi)

(P) có đỉnh nằm trên trục hoành

\(\Rightarrow-\frac{\Delta}{4a}=0\Rightarrow\Delta=0\Rightarrow b^2-4ac=0\Rightarrow b^2=4ac=4a\Rightarrow a=\frac{b^2}{4}\)

Do (P) qua B \(\Rightarrow4a+2b+c=1\Rightarrow b^2+2b=0\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow a=0\left(l\right)\\b=-2\Rightarrow a=1\end{matrix}\right.\)

2/ Cần tìm 3 ẩn mà chỉ cho 1 dữ liệu, how to giải?

3/ \(-\frac{b}{2a}=2>1>-2\)\(a=1>0\)

\(\Rightarrow\) hàm số nghịch biến trên \(\left[-2;1\right]\)

\(\Rightarrow y_{max}=y\left(-2\right)=15\)

30 tháng 11 2019

cảm ơn ạ