Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Ta có : AC=5cm; BC=3cm và AD=7cm
=>CD=AD-AC=7-5=2cm
=>CD=2cm
=>AB=AC-BC=5-3=2cm
=>AB=2cm
=>AB=CD ( vì 2cm=2cm )
vì BC<AC(3<5)=>B nằm giữa A và C nên
AC=AB+BC
=>AB=AC-BC=5-3=2cm
vì AC<AD(5<7)=>C nằm giữa A và D nên
AD=AC+CD
=>CD=AD-AC=7-5=2cm
=>AB=CD(2=2)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{c^2}=\frac{ab}{cd}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
ta có: a/b=c/d=>ad=bc
=>ad=cb=>ab=cd
=>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=(a+b)/(c+d)=ab/cd(đpcm)
Bài 1 :
Ta có : P = a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}
= a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}
= a . ( a - 3 -a - 3 - a + 2 )
= a . ( - a - 8 ) = -8a -a2
: Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]
= a + a + 3 - a - 2 - a - 2
= -1
Ta thấy -1> -8a - a2 => Q > P
Bài 2 :
Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b
<=> a - b + c = a - b + c = a + c - b
do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm)
Bài 3:
a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d )
<=> a - b + c - d = a + c - b - d
<=> a - a + c - c - b + b - d + d = 0
<=> 0 = 0 => VP = VT ( đpcm)
b) a - b - ( c- d ) = ( a + d ) - ( b + c )
<=> a - b - c + d = a + d - b -c
<=> a - a - b + b - c + c + d -d = 0
<=> 0 =0 => VP = VT ( đpcm )
1a ,Ta có VT=a-b-c+d=(a+d)-(b+c)=VP(đpcm)
b ta có VT=a+b-a+b+a-c-a-c=2b-2c=2(b-c)=VP (đpcm)
c Ta có VT=b+b-c+a-b+c-b-c+a-a+b+c=b+a+Vp(đpcm)
2,=>(-x-1)(-x+1).3.(-x+5)=0=>x thuộc -1;1;5
b=> x(-2-5)=-49=>-7x=-49=>x=7
c=> 3(x2-9)(x-7)=0=>3(x-3)(x+3)(x-7)=0=>x thuộc -3;3;7
d=>-4(x+5)(9-2x)=0=>x thuộc -5;4,5