K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Biết   \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:

\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ

31 tháng 5 2016

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

9 tháng 4 2019

sao abd2 chuyển vế mà hk đổi dấu

16 tháng 12 2020

Ta có : AC=5cm; BC=3cm và AD=7cm

=>CD=AD-AC=7-5=2cm

=>CD=2cm

=>AB=AC-BC=5-3=2cm

=>AB=2cm

=>AB=CD ( vì 2cm=2cm ) 

 

vì BC<AC(3<5)=>B nằm giữa A và C nên

AC=AB+BC

=>AB=AC-BC=5-3=2cm

vì AC<AD(5<7)=>C nằm giữa A và D nên

AD=AC+CD

=>CD=AD-AC=7-5=2cm

=>AB=CD(2=2)

19 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{c^2}=\frac{ab}{cd}\)

Aps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

19 tháng 10 2015

ta có: a/b=c/d=>ad=bc

                        =>ad=cb=>ab=cd

                           =>a/c=b/d

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/c=b/d=(a+b)/(c+d)=ab/cd(đpcm)

 

 

29 tháng 6 2017

B1: Ta có :a/b < c/d

=>ad/bd < bc/ba

=>ad < bc

30 tháng 3 2016

ngu ngu ngu ngu ngu

11 tháng 4 2020

Bài 1 : 

Ta có : P =  a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}

                = a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}

                = a . ( a - 3 -a - 3 - a + 2 )

               = a . ( - a - 8 ) = -8a -a2 

        : Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]

              = a + a + 3 - a - 2 - a - 2

             = -1 

Ta thấy -1> -8a - a2 => Q > P

Bài 2 : 

Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b 

<=> a - b + c = a - b + c = a + c - b 

do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm) 

Bài 3:

a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d ) 

<=> a - b + c - d      = a + c - b - d 

<=> a - a + c - c      - b + b - d + d  = 0

<=> 0 = 0 => VP = VT ( đpcm) 

b) a - b - ( c- d ) = ( a + d ) - ( b + c ) 

<=> a - b - c + d = a + d - b  -c 

<=> a - a - b + b - c + c + d -d = 0

<=> 0 =0 => VP = VT ( đpcm )

17 tháng 1 2016

1a ,Ta có VT=a-b-c+d=(a+d)-(b+c)=VP(đpcm)

b ta có VT=a+b-a+b+a-c-a-c=2b-2c=2(b-c)=VP (đpcm)

c Ta có VT=b+b-c+a-b+c-b-c+a-a+b+c=b+a+Vp(đpcm)

2,=>(-x-1)(-x+1).3.(-x+5)=0=>x thuộc -1;1;5

b=> x(-2-5)=-49=>-7x=-49=>x=7

c=> 3(x2-9)(x-7)=0=>3(x-3)(x+3)(x-7)=0=>x thuộc -3;3;7

d=>-4(x+5)(9-2x)=0=>x thuộc -5;4,5

17 tháng 1 2016

nhiều quá 

tick nhé