K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Giải:Chia tam giác đều thành 4 tam giác đều cạnh 1/2 bởi trung điểm các cạnh như hình vẽ 1.Theo nguyên lý Dirichlet tồn tại một tam giác đều nhỏ chứa ít nhất 2 điểm. Khoảng cách giữa 2 điểm này không vượt quá độ dài cạnh tam giác là 1/2 =>đpcm

16 tháng 10 2021

Đùa bạn à, thầy Cẩn đâu cho đưa câu hỏi lên đây đâu.

17 tháng 2 2020

Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .

 Khen mình đi !!!

4 tháng 2

Ghê!

 

Gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC

Do đó diện tích AMN = diện tích BMP = diện tích ANP =  \(\frac{1}{4}\) diện tích ABC

Theo nguyên lý di - rich - le thì trong 9 điểm đề bài cho,ít nhất có 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP

Gọi 3 điểm đó là H,I,K

Chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP

= > diện tích HIK < diện tích ANP = \(\frac{1}{4}\) diện tích tam giác ABC

Vậy sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC

Đáp số : Sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC

16 tháng 5 2016

Sorry bạn na , mk mới lớp 5 chẳng hiểu gì hết 

7 tháng 11 2023

?????????????? đọc xong ong đầu luôn

NV
9 tháng 3 2021

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu