K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

Chị vào http://s1.timtailieu.vn/2cc751c17fa866ad498152b45b1493f7/swf/2014/03/23/nguyen_li_dirichle.dgrc99cYGv.swf  bài tập chon lọc 5 trang 11 nhé

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

9 tháng 6 2016

Bài này hôm qua mình giải rồi. bạn xem bài những bài giải lớp 9 ngày hôm qua sẽ có nhé 

25 tháng 9 2018

Ai làm hộ mình với

29 tháng 12 2023

4.1:

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=8^2+6^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot CB=CA^2\)

=>\(CH\cdot10=6^2=36\)

=>CH=36/10=3,6(cm)

4.2:

Ta có: ΔCAD cân tại C

mà CB là đường cao

nên CB là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD
\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

4.3:

Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: QM=QD

Chu vi tam giác BPQ là:

\(C_{BPQ}=BP+PQ+BQ\)

=BP+PM+BQ+QM

=BP+PA+BQ+QD

=BA+BD

=2BA

=2*8=16(cm)

19 tháng 12 2022

A B C H D E I F K

1/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{3^2+4^2}=5cm\)

\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8cm\)

Xét tg vuông AHB có

\(HA=\sqrt{AB^2-HB^2}\) (Pitago)

\(\Rightarrow HA=\sqrt{3^2-1,8^2}=2,4cm\)

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\) 

2/

Xét tg vuông AHC và tg vuông DHC có

HC chung

HA=HD (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi dây cung)

=> tg AQHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông tương ứng bằng nhau) => AC=DC

Xét tg ABC và tg DBC có

AC=DC (cmt)

BC chung

BA=BD (bán kính (B))

=> tg ABC = tg DBC (c.c.c) \(\Rightarrow\widehat{BAC}=\widehat{BDC}=90^o\)

=> A và D cùng nhìn BC dưới hai góc bằng nhau \(=90^o\) => A và D cùng nằm trên đường tròn đường kính BC hay A; B; C; D cùng nằm trên 1 đường tròn

3/

\(\widehat{EAD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow DA\perp EF\) (1)

\(BF\perp DE\) (gt) (2)

Từ (1) và (2) => I là trực tâm của tg DEF

\(\Rightarrow EK\perp DF\) (trong tg 3 đường cao đồng quy tại 1 điểm)

Gọi K' là giao của DF với (B) \(\Rightarrow\widehat{EK'F}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EK'\perp DF\)

Như vậy từ E có 2 đường thẳng cùng vuông góc với DF => vô lý (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => K trùng K' => K thuộc đường tròn (B)

Xét tg ABK có

BA=BK (bán kính (B)) => tg ABK cân tại B \(\Rightarrow\widehat{BAK}=\widehat{BKA}\) (góc ở đáy tg cân)

 

 

2 tháng 12 2019

D là điểm nào?

2 tháng 12 2019

Cho đường tròn (O, R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm)

a, CMR OA là đường trung trực của đoạn BC

b, Gọi D là giao điểm của đoạn thẳng OA với (O). Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD. Chứng minh C, O, E thẳng hàng và EF là tia phân giác của góc CED

c, Vẽ đường tròn (A, AD). Gọi I, J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) (I, J khác D). Chứng minh rằng góc CEF= góc JID.