Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
+ Vì BE // OD nên ta có ngay góc COD = góc DOB = góc OBE = góc OEB. Ta có :
góc COD + góc DOB + góc BOE = góc OBE + góc OEB + góc BOE = 180 độ
Vậy C,O,E thẳng hàng
+ Vì tam giác OCD cân tại O và OF vuông góc với CD nên OF đồng thời là đường phân giác => góc COF = góc FOD => Cung CF = cung FD
Do góc CED chắn cung CD và F là trung điểm của cung CD nên là đường phân giác góc CED.
Câu hỏi của Khánh Trân Phan - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC. Lại có OB = OC nê AO là đường trung trực của BC hay \(OA\perp BC\)
Do CD là đường kính nên \(\widehat{DBC}=90^o\Rightarrow BD\perp BC\)
Từ đó suy ra AO // BD.
b) Ta thấy \(\widehat{ABE}=\widehat{ADB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)
Vậy nên \(\Delta ABE\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO, đường cao BH, áp dụng hệ thức lượng ta có:
\(AB^2=AH.AO\)
Vậy nên \(AE.AD=AH.AO\)
c) Do \(AE.AD=AH.AO\Rightarrow\frac{AE}{AO}=\frac{AH}{AD}\)
\(\Rightarrow\Delta AEH\sim\Delta AOD\left(c-g-c\right)\Rightarrow\widehat{AHE}=\widehat{ADO}\)
Xét tam giác OED có OE = OD nên nó là tam giác cân. Vậy thì \(\widehat{ADO}=\widehat{OED}\)
Suy ra \(\widehat{AHE}=\widehat{OED}\)
d) Gọi giao điểm của AO với đường tròn (O) là O'. Ta chứng minh O' là tâm đường tròn nội tiếp tam giác ABC.
Thật vậy, nối O'C. Ta có theo tính chất hai tiếp tuyến cắt nhau thì \(\widehat{BOO'}=\widehat{O'OC}\Rightarrow\widebat{BO'}=\widebat{O'C}\Rightarrow\widehat{BCO'}=\widehat{O'CA}\)
Hay O' thuộc phân giác góc ACB. Lại có O' thuộc OA chính là phân giác góc A. Từ đó suy ra O' là giao điểm 3 đường phân giác trong tam giác ABC. Vậy thì O'H = r.
Khi đó HO = OO' - O'H = R - r
Xét tam giác BCD có O là trung điểm CD, OH // BD nên HO là đường trung bình của tam giác CBD. Vậy thì BD = 2HO = 2(R - r)
Kẻ các tiếp tuyến AM,AN với đường tròn (M,N là hai tiếp điểm) .... Cho đường tròn (O),điểm A nằm bên ngoài đường tròn,kẻ tiếp tuyến AM,AN(M,N là các tiếp .... b. vẽ đường kính BC. chứng minh rằng AC song song với MO .... Cho đường tròn (O;R), hai tiếp tuyến MA và MB của đường tròn, AB cắt OM tại H
D là điểm nào?
Cho đường tròn (O, R). Từ điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm)
a, CMR OA là đường trung trực của đoạn BC
b, Gọi D là giao điểm của đoạn thẳng OA với (O). Kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD. Chứng minh C, O, E thẳng hàng và EF là tia phân giác của góc CED
c, Vẽ đường tròn (A, AD). Gọi I, J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A) (I, J khác D). Chứng minh rằng góc CEF= góc JID.