K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Chọn đáp án D

Số nghiệm của phương trình f ( x ) = m  bằng

số giao điểm của đồ thị hàm số y = f ( x )  với

đường thẳng  y = m

 

Từ bảng biến thiên suy ra phương trình có 3 nghiệm phân biệt khi   − 2 < m < 4.

 

19 tháng 8 2018

Đáp án là A

28 tháng 5 2019

Chọn B.

Phương pháp:

Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.

24 tháng 3 2019

Chọn đáp án B

Phương pháp

+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.

+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.

Cách giải

Đặt t=cosx ta có

Khi đó phương trình trở thành f(t)=m.

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.

Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).

13 tháng 7 2018

Đáp án D

Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .

=> 2<m<4.

Chọn phương án D.

13 tháng 12 2017

Để phương trình f(cosx) = m có 3 nghiệm x phân biệt thuộc khoảng  ( 0 ; 3 π 2 ]  thì phương trình f(cosx) = m phải có hai nghiệm cosx phân biệt, trong đó có 1 nghiệm thuộc (-1;0] và một nghiệm thuộc (0;1)

Dựa vào đồ thị, suy ra m ∈ (0;2)

Chọn B.

27 tháng 1 2017

12 tháng 9 2018

Từ bảng biến thiên ta dễ có 1 <m <2 

Chọn đáp án C.

5 tháng 10 2019

Đáp án là D

24 tháng 10 2018

Đáp án B

Phương trình f(x) = f(m) có ba nghiệm phân biệt  ⇔ - 2 < f ( m ) < 2 ⇒ - 1 < m < 3 m ≠ 0 ; 2