K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\)

\(\Rightarrow2A=2.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)

\(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)

\(\Rightarrow2A-A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)

\(\Rightarrow A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2006}}\)

\(=2-\frac{1}{2^{2006}}\)

7 tháng 7 2016

\(9^8:3^2=\left(3^2\right)^8:3^2=9^8:9=9^{8-1}=9^7\)

7 tháng 7 2016

9^8 :3^2 =9^7 do ban

3 tháng 5 2018

không biết

14 tháng 2 2019

c)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)

\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có  7 số 1)

\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(7+1-\frac{1}{8}=\frac{63}{8}\)

Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé

Chúc bạn học tốt !!!

27 tháng 10 2021
101+100+99+98+....+3+2+1 =(100+1)+100+(99+1)+(98+2)...+55 =(100+100)+1+100+100+.....+100+55 =200+1+55+100×100 =200+1+55+10000 =201+55+10000 =256+10000 10256
27 tháng 10 2021
Câu này hình như mik sai ở đâu á.Nếu sai au sủa giúp mik nhé 😢
22 tháng 3 2017

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

22 tháng 3 2017

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !