Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o
Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)
=> ABC = 90o - ACB
=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)
=> CBD = 45o - \(\frac{ACB}{2}\)
Vì \(CH\perp DE\) nên CHD = 90o
Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)
=> 45o - \(\frac{ACB}{2}\) + BCH = 90o
=> BCH - \(\frac{ACB}{2}\) = 45o
=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)
=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
=> BCH - ACB = \(\frac{DCE}{2}\)
=> \(DCH=\frac{DCE}{2}\)
=> CH là tia phân giác của góc DCE (đpcm)
bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o.
Xét \(\Delta ABC\)có : ABC + ACB = 90o ( tính chất \(\Delta\)vuông )
\(\Rightarrow ABC=90^o-ACB\)
\(\Rightarrow\frac{ABC}{2}=\frac{90^0-ACB}{2}\)
\(\Rightarrow CBD=45^o-\frac{ACB}{2}\)
Vì \(CH \perp DE\)nên CDH = 90o.
Xét \(\Delta BHC\)có : HBC + BCH = 90o ( tính chất \(\Delta\)vuông )
\(\Rightarrow45^o-\frac{ACB}{2}+BCH=90^o\)
\(\Rightarrow BCH-\frac{ACB}{2}=45^o\)
\(\Rightarrow BCH-\frac{ACB}{2}=\frac{BCE}{2}\)( vì BCE = 90o )
\(\Rightarrow BCH-\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
\(\Rightarrow BCH-ACB=\frac{DCE}{2}\)
\(\Rightarrow DCH=\frac{DCE}{2}\)
\(\Rightarrow\)CH là tia phân giác của góc DCE ( đpcm )
#Panda
xét tam giác CEH co:
H=90 độ=> C2+E=90 độ}
mà B2+E=90 độ }=> C2+E=B2+E=90 độ
=> C2=B2=90 đỘ(1)
XÉT tam giác CDH co:
H=90 ĐỘ=>D2+C1=90 độ
xét tam giác ABD CÓ:}
A=90 ĐỘ=>B1+D1=90 ĐỘ}
mà D2=D1(2 góc đối đỉnh)} => D2+C1=B1+D1=90 ĐỘ
=> C1=B1(2)
Từ (1) và(2)=> C1=B1; C2=B2 mà B1=B2=> C2=C1
VAY CH LA PHAN GIAC CU GOC DCE
để bạn sai ở chỗ là CH là p/g của góc DCE mới đúng
tick đúng 100% nhA
Ta có: \(\widehat{BDA}+\widehat{DBA}=90^0\)(ΔBAD vuông tại A)
\(\widehat{CEB}+\widehat{CBE}=90^0\)(ΔCBE vuông tại C)
mà \(\widehat{DBA}=\widehat{CBE}\)
nên \(\widehat{BDA}=\widehat{CEB}\)
=>\(\widehat{CED}=\widehat{CDE}\)
=>ΔCDE cân tại C
ΔCDE cân tại C
mà CH là đường cao
nên CH là phân giác của góc ECD