K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

S(ACF) = S(ACFG) -S(AFG)

S(ACFG) = S(ACD) + S(CDGF) = \(\frac{8.8}{2}\)+ \(\frac{\left(8+4\right).4}{2}\)= 32 + 24 = 56 (cm2) (1)

S(AFG) = \(\frac{\left(AD+DG\right).GF}{2}\)= \(\frac{\left(8+4\right).4}{2}\)= 24 cm2 (2)

vậy từ (1) và (2) --> S(ACF) = 56 - 24 = 32 cm2

NV
9 tháng 8 2021

Áp dụng định lý Pitago cho tam giác vuông ABC

\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:

\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)

\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b.

Ta có: \(EC=AC-AE=3,6\left(cm\right)\)

Do AB song song CF, theo định lý Talet:

\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)

\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADF:

\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)

Pitago tam giác vuông BCF:

\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)

Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)

\(\Rightarrow FH=AD=6\left(cm\right)\)

\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

NV
9 tháng 8 2021

undefined

17 tháng 8 2018

a) Hình tròn có bán kính 2cm có diện tích : S = π. 2 2  = 4π ( c m 2 )

b) Hình vuông có độ dài cạnh 3,5cm có diện tích : S =  3 , 5 2  = 12,25 ( c m 2 )

c) tam giác có các cạnh 3cm,4cm,5cm nên nó là tam giác vuông

Khi đó tam giác có diện tích: S =(Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9).3.4 =6( c m 2 )

d) Nửa mặt cầu bán kính 4cm có diện tích : S= (Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9).4. π . 4 2  = 32 π  ( c m 2 )

Vậy trong các hình trên thì nửa mặt cầu bán kính 4cm có diện tích lớn nhất

Vậy chọn đáp án (D)

9 tháng 6 2017

Chọn (D)

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng