Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(X=\left(1+\dfrac{1}{9}\right)\left(1+\dfrac{1}{10}\right)\left(1+\dfrac{1}{11}\right).....\left(1+\dfrac{1}{200}\right)\)
\(X=\dfrac{10}{9}.\dfrac{11}{10}.\dfrac{12}{11}......\dfrac{201}{200}\)
\(X=\dfrac{10.11.12......201}{9.10.11......200}\)
\(X=\dfrac{201}{9}\)
\(Y=\left(1-\dfrac{1}{10}\right)\left(1-\dfrac{1}{11}\right)\left(1-\dfrac{1}{12}\right).....\left(1-\dfrac{1}{99}\right)\)
\(Y=\dfrac{9}{10}.\dfrac{10}{11}.\dfrac{11}{12}.....\dfrac{98}{99}\)
\(Y=\dfrac{9.10.11......98}{10.11.12.....99}\)
\(Y=\dfrac{9}{99}=\dfrac{1}{11}\)
Bài 2:
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0+0+...+0
=0
Bài 3:
\(7A=\dfrac{7^{11}+7}{7^{11}+1}=1+\dfrac{6}{7^{11}+1}\)
\(7B=\dfrac{7^{12}+7}{7^{12}+1}=1+\dfrac{6}{7^{12}+1}\)
mà \(\dfrac{6}{7^{11}+1}>\dfrac{6}{7^{12}+1}\)
nên A>B
a, (x+1) + (x+3) + ...... + (x+99) = 100
(x+x+x+...+x) + (1+3+....+99) = 100
(x.50) + 2450 = 100
x.50 = 100 - 2450
x.50 = -2350
x = -2350 : 50
x = -47
b, (x-3) + (x-2) + (x-1) + ........ + 10 + 11 = 11
(x+x+x) - (3+2+1) + (1+2+3+...+10+11) = 11
3x - 6 + 66 = 11
3x + 60 = 11
3x = 11 - 60
3x = 49
x = \(\frac{49}{3}\)
phần b mk ko chắc lắm
1:
Ta có: \(D=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{53\cdot55}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{53\cdot55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{11}{55}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{2}{11}=\dfrac{3}{11}\)
2) Để A là số nguyên dương thì
\(\left\{{}\begin{matrix}x+2⋮x-5\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5+7⋮x-5\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7⋮x-5\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5\inƯ\left(7\right)\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5\in\left\{1;-1;7;-7\right\}\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;4;12;-2\right\}\\x>5\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{6;12\right\}\)