K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a, \(A=\frac{7}{n-3}\)

Để \(\frac{7}{n-3}\in Z\)thì \(7⋮n-3\Leftrightarrow n-3\inƯ\left(7\right)=\left\{\text{±}1;\text{±}7\right\}\)

Ta có bảng sau:

n - 3-1-717
n2-4410

Vậy \(n\in\left\{-4;2;4;10\right\}\)để\(\frac{7}{n-3}\in Z\)

b,\(B=\frac{13}{2n-5}\)

Để \(\frac{13}{2n-5}\in Z\)thì \(13⋮2n-5\Leftrightarrow2n-5\inƯ\left(13\right)=\left\{\text{±}1;\text{±}13\right\}\)

Ta có bảng sau:

2n - 5-1-13113
2n4-8618
n2-439

Vậy \(n\in\left\{-4;2;3;9\right\}\)để\(\frac{13}{2n-5}\in Z\)

c, \(C=\frac{-6}{3n+2}\)

Để \(\frac{-6}{3n+2}\in Z\)thì \(-6⋮3n+2\Leftrightarrow3n+2\inƯ\left(-6\right)=\left\{\text{±}1;\text{±}2;\text{±}3;\text{±}6\right\}\)

Ta có bảng sau:

3n + 2-1-2-3-61236
3n-3-4-5-8-1014
n-1\(\frac{-4}{3}\)\(\frac{-5}{3}\)\(\frac{-8}{3}\)\(\frac{-1}{3}\)0\(\frac{1}{3}\)\(\frac{4}{3}\)

Vậy \(n\in\left\{\frac{-8}{3};\frac{-5}{3};\frac{-4}{3};\frac{-1}{3};-1;0;\frac{1}{3};\frac{4}{3}\right\}\)để \(\frac{-6}{3n+2}\in Z\)

mà \(n\in Z\)

Vậy \(n\in\left\{-1;0\right\}\)để\(\frac{-6}{3n+2}\in Z\)

24 tháng 6 2017

a,Để \(A\in Z\)

\(\Rightarrow\)\(\frac{7}{n-3}\in Z\)

\(\Rightarrow\)n-3\(\in\)Ư(7)

n-3 \(\in\){1;-1;7;-7}

n\(\in\){4;2;10;-4}

Vậy n\(\in\){4;2;10;-4}

b,Để \(B\in Z\)

\(\Rightarrow\frac{13}{2n-5}\in Z\)

\(\Rightarrow\)2n-5\(\in\)Ư(13)

2n-5\(\in\){1;-1;13;-13}

2n\(\in\){6;4;18;-8}

n\(\in\){3;2;9;-4}

Vậy n\(\in\){3;2;9;-4}

c,Để \(C\in Z\)

\(\Rightarrow\frac{-6}{3n+2}\in Z\)

\(\Rightarrow\)3n+2\(\in\)Ư(-6)

3n+2\(\in\){1;-1;2;-2;3;-3;6;-6}

n\(\in\){-1;0}

Vậy n \(\in\){-1;0}

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị

a: A nguyên

=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}

b: B nguyên

=>2n+3 chia hết cho 7

=>2n+3=7k(k\(\in Z\))

=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)

c: C nguyên

=>2n+5 chia hết cho n-3

=>2n-6+11 chia hết cho n-3

=>n-3 thuộc {1;-1;11;-11}

=>n thuộc {4;2;12;-8}

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

12 tháng 3 2022

a, \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

n+11-12-24-48-8
n0-21-33-57-9

 

b, \(\dfrac{n-2+5}{n-2}=1+\dfrac{5}{n-2}\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n316-3

 

c, \(\dfrac{3\left(n+4\right)-17}{n+4}=3-\dfrac{17}{n+4}\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

n+41-117-17
n-3-513-21

 

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

23 tháng 2 2019

Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5

   suy ra (n+8).2 chia hết cho n+8 hay2n+16

Suy ra (2n+16)-(2n-5) chian hết cho 2n-5

suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}

                                                 suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}

                                                suy ra n thuộc{-8;13;4;1;6;-1;3;2}

Vậy n thuộc{-8;13;4;1;6;-1;3;2}