K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

25 tháng 4 2023

ko nhìn ra

 

18 tháng 7 2016

Ta có

 A \(\in\)Z <=> n+10 chia hết cho 2n+8

           <=> 2n+20 chia hết cho 2n+8

           <=> 2n+20-(2n+8) chia hết cho 2n+8

            <=> 12 chia hết cho 2n+8

            <=> 2n+8 \(\in\) Ư(12)

Mà n là số tự nhiên nên \(2n+8\ge8\)

Ta có \(Ư_{\left(12\right)}=\left(1;2;3;4;12;-1;-2;-3;-4;-6;-12\right)\)

=> 2n+8=12

=> 2n=4

=>n=2

Vậy số cần tìm là 2

15 tháng 5 2016

\(A=\frac{2}{n-1}\) là số nguyên khi \(2⋮n-1\)

\(\Rightarrow n-1\inƯ\left(2\right)\)

\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)

Chúc bạn học tốtok

17 tháng 5 2016

để A là số nguyên thì 2 phải chia hết cho n-1 => n -1 thuộc ước của 2

Ư (2) = { 1;-1;2;-2}                                                                                                                                                                                            nếu n-1= 1 =>n =2                                n-1=-1=> n = 0                                                                                                                                    n-1=2 => n=3                                        n-1=-2 => n= -1

vậy n ={ 2;0;3;-1} thì A là số nguyên

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:

a. $P=\frac{n-2}{n+5}=1-\frac{7}{n+5}$

Để $P$ nguyên thì $\frac{7}{n+5}$ nguyên. 

$\Rightarrow n+5$ là ước của $7$

$\Rightarrow n+5\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{-4; -6; 2; -12\right\}$

b. 

Để phân số $P$ rút gọn được thì $n-2, n+5$ không nguyên tố cùng nhau. 

Gọi $ƯCLN(n-2, n+5)=d$ thì $n-2\vdots d; n+5\vdots d$

$\Rightarrow 7\vdots d$

Để $n-2, n+5$ không nguyên tố cùng nhau thì $d=7$

$\Rightarrow n-2\vdots 7$

$\Rightarrow n-2=7k$ với $k$ nguyên 

$\Rightarrow n=7k+2$ với $k$ là số nguyên bất kỳ.