Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
\(3,x\left(x-1\right)-y\left(1-x\right)=\left(x+y\right)\left(x-1\right)\\ 4,x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\\ 5,x^2-2xy+y^2-xz+yz=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y-z\right)\left(x-y\right)\\ 6,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\\ 9,x^3+x^2-xy+xy+y^2+y^3\\ =x^2\left(x+1\right)+y^2\left(x+1\right)=\left(x^2+y^2\right)\left(x+1\right)\\ 10,x^2-6\left(x+3\right)-9\\ =x^2-6x-18-9\\ =x^2-6x-27=\left(x-9\right)\left(x+3\right)\)
10: \(x^2-6\left(x+3\right)-9\)
\(=x^2-6x-18-9\)
\(=x^2-6x-27\)
\(=\left(x-9\right)\left(x+3\right)\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
Bài 2: a) Để tính giá trị của A = 5x(x^2-3) + x^2(7-5x) - 7x tại x = -3, ta thay x = -3 vào biểu thức và tính toán: A = 5(-3)((-3)^2-3) + (-3)^2(7-5(-3)) - 7(-3) = 5(-3)(9-3) + 9(7+15) + 21 = -15(6) + 9(22) + 21 = -90 + 198 + 21 = 129
Vậy giá trị của A tại x = -3 là 129.
Bài 3: a) Để rút gọn và tính giá trị của biểu thức c = 5x^2-3x(x+2), ta thay x = -3 vào biểu thức và tính toán: c = 5(-3)^2 - 3(-3)(-3+2) = 5(9) - 3(9)(-1) = 45 - 27 = 18
Vậy giá trị của c tại x = -3 là 18.
b) Để rút gọn và tính giá trị của biểu thức b = 3x^2y(2x^2-y) - 4x^2(4x^2-y^2), ta thay x = -3 và y = -2 vào biểu thức và tính toán: b = 3(-3)^2(-2)(2(-3)^2-(-2)) - 4(-3)^2(4(-3)^2-(-2)^2) = 3(9)(-2)(2(9)-2) - 4(9)(4(9)-4) = -54(18-2) - 36(36-4) = -54(16) - 36(32) = -864 - 1152 = -2016
Vậy giá trị của b tại x = -3 và y = -2 là -2016.
c) Để rút gọn và tính giá trị của biểu thức c = xy^2(x-xy) - x(x=y) + yx(2x^2-2xy), ta thay x = -3 và y = -2 vào biểu thức và tính toán: c = (-3)(-2)^2((-3)-(-3)(-2)) - (-3)(x=(-3)) + (-2)(-3)(2(-3)^2-2(-3)(-2)) = (-3)(4)(-3+6) - (-3)(x=(-3)) + (-2)(-3)(18-12) = (-3)(4)(3) - (-3)(x=(-3)) + (-2)(-3)(6) = (-12)(3) + (-3)(-3) + (-2)(-3)(6) = -36 + 9 + 36 = 9
Vậy giá trị của c tại x = -3 và y = -2 là 9.
2:
a: \(A=5x^3-15x+7x^2-5x^3-7x=7x^2-22x\)
Khi x=-3 thì A=7(-3)^2+22*3
=63+66
=129
b: \(B=x^4-x^2y^2+x^2y^2+y^4=x^4+y^4\)
Khi x=-3 và y=-2 thì B=(-3)^4+(-2)^4
=81+16
=97
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
a) 6x2 - 12x
= 6x(x - 2)
b) x2 + 2x + 1 - y2
= (x2 + 2x + 1) - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
c) x + y + z + x2 + xy + xz
= (x + x2) + (y + xy) + (z + xz)
= x(1 + x) + y(1 + x) + z(1 + x)
= (x + y + z)(x + 1)
d) xy + xz + y2 + yz
= (xy + xz) + (y2 + yz)
= x(y + z) + y(y + z)
= (x + y)(x + z)
e) x3 + x2 + x + 1
= (x3 + x2) + (x + 1)
= x2(x + 1) + (x + 1)
= (x2 + 1)(x + 1)
f) xy + y - 2x - 2
= (xy + y) - (2x + 2)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
g) x3 + 3x - 3x2 - 9
= (x3 - 3x2) + (3x - 9)
= x2(x - 3) + 3(x - 3)
= (x2 + 3)(x - 3)
h) x2 - y2 - 2x - 2y
= (x2 - y2) - (2x + 2y)
= (x + y)(x - y) - 2(x + y)
= (x + y)(x - y - 2)
i) 7x2 - 7xy - 5x = 5y
mk thấy con này sai sai ý
a: \(A=y^2-8y-x\left(8-y\right)\)
\(=y\left(y-8\right)+x\left(y-8\right)\)
\(=\left(y-8\right)\left(x+y\right)\)
\(=100\cdot100=10000\)