Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2a=1-\sin^2\alpha=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\cos\alpha=\frac{1}{2}\)(do \(\cos\alpha>0\))
b) \(Q=\sin^2\alpha+\cot^2\alpha.\sin^2\alpha=\sin^2\alpha\left(1+\cot^2\alpha\right)\)\(=\sin^2\alpha\left(1+\frac{\cos^2\alpha}{\sin^2\alpha}\right)=\sin^2\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin^2\alpha}=1\)
a) \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
Lời giải:
a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:
\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)
\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)
b)
\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)
\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)
\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)
\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)
\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)
Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)
c)
\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)
Do đó:
\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)
a: \(\sin^2a+\cos^2a=1\)
\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)
hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)
b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)
\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)
\(\dfrac{sina+cosa}{sina-cosa}=3=>sina+cosa=3sina-3cosa\)
\(=>2sina=4cosa=>sina=2cosa\)
\(=>tana=\dfrac{sina}{cosa}=\dfrac{2cosa}{cosa}=2\)
\(\cos a-\sin a=\dfrac{1}{5}\\ \Leftrightarrow\left(\cos a-\sin a\right)^2=\dfrac{1}{25}\\ \Leftrightarrow1-2\sin a\cos a=\dfrac{1}{25}\\ \Leftrightarrow2\sin a\cos a=\dfrac{24}{25}\)
Mà \(\cos a=\dfrac{1}{5}+\sin a\)
\(\Leftrightarrow2\sin a\left(\dfrac{1}{5}+\sin a\right)=\dfrac{24}{25}\\ \Leftrightarrow\dfrac{2}{5}\sin a+2\sin^2a-\dfrac{24}{25}=0\\ \Leftrightarrow\left[{}\begin{matrix}\sin a=\dfrac{3}{5}\\\sin a=-\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos a=\dfrac{4}{5}\\\cos a=-\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\cot a=\dfrac{4}{5}\cdot\dfrac{5}{3}=\dfrac{4}{3}\)
Ta có: \(sin^2a+cos^2a=1\)
\(\Rightarrow cos^2a=1-sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Rightarrow cosa=\dfrac{4}{5}\)(vì \(0^o\le a\le90^o\))
Ta có: \(sin^2\alpha+cos^2\alpha=1\Rightarrow sin^2\alpha+\left(sin\alpha+\dfrac{1}{5}\right)^2=1\)
\(\Rightarrow25sin^2\alpha+5sin\alpha-12=0\\\Rightarrow\left(5sin\alpha-3\right)\left(5sin\alpha+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}sin\alpha=\dfrac{3}{5}\Rightarrow cos\alpha=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cot\alpha=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\sin\alpha=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right. \)