\(\dfrac{1}{3}\). Tính giá trị P = 3.sin2 α + 4.cos<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:

\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)

\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)

b)

\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)

\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)

\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)

\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)

\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)

Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)

c)

\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)

Do đó:

\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

2 tháng 9 2018

bài 1: ta có : \(cos^220+cos^240+cos^250+cos^270\)

\(=cos^220+cos^270+cos^240+cos^250\)

\(=cos^220+cos^2\left(90-20\right)+cos^240+cos^2\left(90-40\right)\)

\(=cos^220+sin^220+cos^240+sin^240=1+1=2\)

bài 2: a) ta có : \(cot^2\alpha-cos^2\alpha=cos^2\alpha\left(\dfrac{1}{sin^2\alpha}-1\right)=cos^2\alpha.\left(\dfrac{1-sin^2\alpha}{sin^2\alpha}\right)\)

\(=cos^2\alpha.\left(\dfrac{cos^2\alpha}{sin^2\alpha}\right)=cos^2\alpha.cot^2\alpha\left(đpcm\right)\)

b) ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Leftrightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Leftrightarrow\dfrac{1+cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1-cos\alpha}\left(đpcm\right)\)

3 tháng 9 2018

dạ e cảm ơn nh ạ!!!!hihi

11 tháng 9 2015

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

NV
3 tháng 9 2020

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)

30 tháng 6 2017

xin lỗi mk ko thể giúp bn đc mk mới hc lp 7 thôi!

27 tháng 7 2018

a) Mình nghĩ là cos a = cot a . sin a chứ :))

CM nà :

Ta có : cot a =  \(\frac{AB}{AC}\)(1)

\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\)cot a =  \(\frac{cosa}{sina}\)

\(\Leftrightarrow\)cos a = cot a . sin a

b) Ta có : tan a =  \(\frac{AC}{AB}\)

Lại có : cot a =  \(\frac{AB}{AC}\)

\(\Rightarrow\)cos a . tan a =  \(\frac{AC.AB}{AB.AC}\)= 1 

Vậy ...

26 tháng 8 2018

tớ cần câu trả lời