Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC};\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{ACB}\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\end{matrix}\right.\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\\ \left\{{}\begin{matrix}\widehat{B_1}=\widehat{C_1}\\AB=AC\\\widehat{A}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AFC\left(g.c.g\right)\Rightarrow AE=AF\\ \Rightarrow\Delta AEF.cân\)
\(b,\left\{{}\begin{matrix}AE=AF\\AB=AC\end{matrix}\right.\Rightarrow AB-AF=AC-AE\Rightarrow BF=CE\\ \left\{{}\begin{matrix}BF=CE\\\widehat{ABC}=\widehat{ACB}\\BC.chung\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(c.g.c\right)\)
\(c,\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BFCE\) là hthang
Mà \(\widehat{ABC}=\widehat{ACB}\) nên BFCE là hthang cân
a) Ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
Xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)Ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
Xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c) Tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
Tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
Ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
Từ (1)(2)=> tứ giác BFEC là hình thang cân
bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!
bài 2 theo mk là làm như thế này !
à mà bạn tự vẽ hình nhé!!!
Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.
Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:
AD = BC ( đề cho)
góc D = góc C ( đề cho )
=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )
=> AH = BG
mặt khác AH // BG ( cùng \(\perp\) BC )
=> Tứ giác ABGH là hình bình hành
=> AB // HG hay AB // DC
Tứ giác ABCD có góc D = góc C và AB // DC
=> ABCD là hình thang cân ( đpcm)
a) Ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
Xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)Ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
Xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c) Tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
Tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
Ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
Từ (1)(2)=> tứ giác BFEC là hình thang cân
\(7,\)
\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)
\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)
\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
Vậy \(BEFC\) là hình thang cân
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Có: BE là tia pg của ^B(gt)
CF là tia og của C(gt)
Mà ^B=^C
=> ^ABE=^CBE=^ACF=^BCF
b) Xét ΔABE và ΔACF có:
^A : góc chung
AB=AC(gt)
^ABE=^ACF(cmt)
=>ΔABE=ΔACF(g..c.g)
=> AE=AF
=>ΔAEF cân tại A
=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\) (1)
Có: ΔABC cân tại A(gt)
=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị
=>FE//BC
Mà ^B=^C(gt)
=> tứ giác BFEC là ht cân
a) Chứng minh: Tam giác ABE = Tam giác ACF (c.h - g.n)
=> AE = AF (2 cạnh tương ứng)
=> Tam giác AEF cân tại A
b) Tam giác AEF cân tại A
\(\Rightarrow\widehat{AFE}=\dfrac{180^0-\widehat{BAC}}{2}\left(1\right)\)
Tam giác ABC cân tại A
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) => Góc AFE = Góc ABC
Mà 2 góc này đồng vị
=> EF // BC
=> BFEC là hình thang
Lại có: Tam giác ABE = Tam giác ACF (cmt) => BE = CF
=> BFEC là HTC
c) \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{170^0}{2}=85^0\)
Có: BF // BC
=> Góc ABC + Góc BFE = 180 độ
=> Góc BFE = 95 độ
Tương tự tính 2 góc còn lại nhé!
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(AB=AC\) (do tam giác ABC cân tại A)
\(\widehat{BAC}\) chung
\(\widehat{AEB}=\widehat{AFC}=90^0\)
nên \(\Delta AEB=\Delta AFC\left(ch.gn\right)\)
\(\Rightarrow AE=AF\) .Suy ra tam giác AEF cân tại A
b) Có \(\widehat{AFE}+\widehat{AEF}=180^0-\widehat{FAE}\)
\(\Leftrightarrow\)\(2\widehat{AFE}=180^0-\widehat{FAE}\) \(\Leftrightarrow\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}\)
Lại có:\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)
\(\Leftrightarrow\)\(2\widehat{ABC}=180^0-\widehat{BAC}\)\(\Leftrightarrow\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{AFE}=\widehat{ABC}\) mà hai góc nằm ở vị trí hai góc đồng vị nên FE//BC
\(\Rightarrow BFEC\) là hình thang mà \(\widehat{FBC}=\widehat{ECB}\) (vì tam giác BAC cân tại A)
nên BFEC là hình thang cân
c) Có \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-10^0}{2}\)\(=85\)\(^0\)
Vậy...