K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Qũy đạo chuyển động của điểm M là hai cung tròn đối xứng nhau qua dây AB

25 tháng 3 2018

Qũy đạo chuyển động của điểm M là hai cung tròn đối xứng nhau qua dây AB

16 tháng 5 2016

ủa sao dài thếmình mới học lớp 6 thôi

cho minh nha rối mình lại cho

17 tháng 5 2016

B A F N D M C E

Cô hướng dẫn em câu d nhé, theo cô thấy thì đề của em không đúng, góc vuông ở đây là BND nhé ^^

Do F đối xứng với E qua A nên tam giác BEF cân tại B, từ đó góc FBA = góc ABE. Lại do câu b, góc ABE = góc AMD nên góc NBD bằng góc NMD. Vậy tứ giác BMDN nội tiếp. 

Ta thấy góc BMD vuông nên BD là đường kính. Từ đó góc DNB vuông (đpcm)

Chúc em học tốt :))))

1. Xét tứ giác CEHD ta có:Góc CEH = 900 (Vì BE là đường cao)Góc CDH = 900 (Vì AD là đường cao)=> góc CEH + góc CDH = 1800Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.CF là đường cao => CF ┴ AB => góc BFC = 900.Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính...
Đọc tiếp

1. Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

0
20 tháng 8 2016

A B C D E H M N

Xét hai tam giác vuông : tam giác DAB và tam giác EAC có : 

góc A là góc chung , góc EAC = góc ADB = 90 độ

=> tam giác DAB đồng dạng tam giác EAC

=> \(\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AD.AC\)

Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông ABN có đường cao NE:\(AN^2=AE.AB\)

Áp dụng hệ thức về cạnh trong tam giác vuông AMC có đường cao MD : 

\(AM^2=AD.AC\)

Mà AE . AC = AD . AC => \(AM^2=AN^2\Rightarrow AM=AN\) (đpcm)

22 tháng 6 2021

^EAC=^ADB=90 độ ?