K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{6}{sin50}\simeq7,83\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2\)

=>\(AC\simeq5,03\left(cm\right)\)

b: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}+58^0=90^0\)

=>\(\widehat{B}=32^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin58}\simeq11,79\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq6,25\left(cm\right)\)

c: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-58^0=32^0\)

Xét ΔABC vuông tại A có

\(sinB=\dfrac{AC}{BC}\)

=>\(AC=BC\cdot sinB=20\cdot sin58\simeq16,96\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{BC^2-AC^2}\simeq10,6\left(cm\right)\)

d: Bạn ghi lại đề đi bạn

24 tháng 3 2019

a, Sử dụng tỉ số cosC và sinC, tính được

a =  20 3 3 cm, c =   10 3 3 cm và  B ^ = 60 0

b, Sử dụng tỉ số sinB và cosB, tính được:

b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm

c, Sử dụng định lý Pytago và tỉ số sinB, tính được:

c =  5 5 cm, sinB =  10 15 =>  B ^ ≈ 41 , 8 0 ,  C ^ ≈ 48 , 2 0

d, Tương tự c) ta có

a =  193 cm, tanB =  12 7 =>  B ^ ≈ 59 , 7 0 ,  C ^ = 30 , 3 0

26 tháng 10 2018

 a) Ta có AB^2+AC^2=6^2+8^2=100=10^2=BC^2

Vậy tam giác ABC vuông b)theo mình thì chứng minh da=de mới đúng

Xét tam giác BAD và tam giác BED có ^BAD=^BED(=90 độ)

Cạnh BD chung ^ABD=^DBE( hai tia phân giác )

Vậy tam giác BAD =tam giác BED =>AD=ED

1 tháng 10 2023

a) Ta có:

\(\widehat{B}=180^o-90^o-52^o=28^o\) 

\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)

\(\Rightarrow AB\approx11,55\left(cm\right)\)

b) Áp dụng Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\) 

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)

\(\Rightarrow\widehat{B}\approx58^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)

c) Ta có:

\(\widehat{C}=180^o-90^o-35^o=55^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)

\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)

1 tháng 10 2023

a) \(\widehat{B}=180^o-90^o-52^o=38^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\) 

b) \(\widehat{C}=180^o-90^o-58^o=32^o\)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\dfrac{3}{4}\)

1 tháng 10 2023

Hình bn tự vẽ nhan

a/Ta có : góc A+góc B+góc C=180độ =>gócB=

góc-AgócC=90độ-45độ=45độ

sinC=AB/BC=>BC=AB/sinC

         <=>BC=10/sin45độ=10√2cm

 Xét tam giác ABC,gócA=90độ có:

BC^2=AB^2+AC^2(pytago)

=>AC^2=BC^2-AB^2

AC^2=(10√2)^2-10^2=100

AC=√100=10cm


 

30 tháng 9 2023

12 tháng 4 2018

HS tự làm