K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

a) (H.a)

ˆB=9030=60.B^=90∘−30∘=60∘.

AB=ACtgC=10tg305,774(cm)AB=AC⋅tgC=10⋅tg30∘≈5,774(cm)

BC=ACcosC=10cos3011,547(cm)BC=ACcosC=10cos⁡30∘≈11,547(cm).

b) (H.b)

ˆB=9045=45.B^=90∘−45∘=45∘.

AC=AB=10(cm);⇒AC=AB=10(cm);

BC=ABsinC=10sin4514,142(cm)BC=ABsinC=10sin⁡45∘≈14,142(cm)

c) (H.c)

ˆC=9035

a: \(\widehat{B}=45^0\)

\(b=c=10cm\)

\(a=\sqrt{2\cdot b^2}=10\sqrt{2}\left(cm\right)\)

b: \(\widehat{C}=90^0-35^0=55^0\)

\(b=a\cdot\sin B=11,47\left(cm\right)\)

\(c=\sqrt{a^2-b^2}=16,38\left(cm\right)\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

4 tháng 7 2019

#)Giải :

a)\(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{BAD}+\widehat{DAC}=90^o\left(1\right)\)

\(\Delta HAD\)vuông tại H (gt)\(\Rightarrow\widehat{HDA}+\widehat{HAD}=90^o\left(2\right)\)

Vì AD là tia phân giác của \(\widehat{HAC}\Rightarrow\)\(\widehat{HAD}=\widehat{DAC}\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAD}=\widehat{DAC}\)

\(\Rightarrow\Delta ABD\)cân tại A

b) Từ cmt \(\Rightarrow AB=BD\)(tính chất của tam giác cân)

Đặt \(AB=BD=x\)

Áp dụng hệ thức lượng trong tam giác vuông ABC 

\(\Rightarrow AB^2=HB.HC\)

Hay \(x^2=\left(x-6\right)25\)

\(\Rightarrow x^2-25+150=0\)

\(\Rightarrow\left(x-10\right)\left(x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-10=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=15\end{cases}}}\)

Vậy AB = 10 hoặc AB = 15

15 tháng 7 2019

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

20 tháng 7 2017

\(\hept{\begin{cases}\\\\\end{cases}}\)

5 tháng 10 2019

b, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{C}=180^0-62^0-51^0=67^0\)

Kẻ AH \(\perp\)BC

\(\widehat{BAH}=90^0-\widehat{B}=90^0-51^0=39^0\)

Áp dụng ht trong tam giác vuông có:

\(BH=AB.sin\widehat{BAH}=10.sin39^0\approx6,29\left(cm\right)\)

\(AH=AB.sinB=10.sin51^0\)

\(sinC=\frac{AH}{AC}\)=> \(AC=\frac{AH}{sinC}=\frac{10.sin51^0}{sin67^0}\approx8,44\left(cm\right)\)

5 tháng 10 2019

a, Có \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-30^0-42^0=108^0\)

Kẻ CH\(\perp\)AB

Xét tam giác vuông AHC có góc A bằng 300

=> \(CH=\frac{AC}{2}=\frac{4}{2}=2\)( vì trong tam giác vuông ,cạnh đối diện với góc 300 bằng một nửa cạnh huyền)

Áp dụng ht trong tam giác vuông có:

\(AH=AC.cos30^0=4.\frac{\sqrt{3}}{2}=2\sqrt{3}\) (cm)

\(HB=HC.cotB=2.cot42^0\approx2,22\)(cm)

=> AB=AH+HB=\(2\sqrt{3}+2,22\) (cm)

Áp dụng ht trong tam giác vuông có:

\(HC=BC.sinB\)

=> \(BC=\frac{HC}{sinB}=\frac{2}{sin51^0}\approx2,574\) (cm)

 Trên tia đối AB lấy I sao cho AI = AB 
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD 
Ta có hình vuông IAMD => IA = IM = MD = DA 
Xét [​IMG]MBI và [​IMG]CMN 
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vì[​IMG] và IA = IM \Rightarrow [​IMG])
[​IMG] (gt)
\Leftrightarrow [​IMG]MBI = [​IMG]CMI (c - g - c)
\Rightarrow [​IMG] ; BM = CM \Rightarrow [​IMG] BMC cân ở M (|-)1)
Xét [​IMG]BIM và [​IMG]EAB 
AB = MI 
AE = BI 
[​IMG]
\Leftrightarrow [​IMG]BIM = [​IMG]EAB (c - g - c)
\Rightarrow [​IMG] (góc tương ứng)

Ta có:
[​IMG]
Mà: [​IMG] 
\Rightarrow [​IMG] 
\Rightarrow [​IMG]BMC vuông ở M :)-*2)

Từ (|-)1) và :)-*2) 
\Rightarrow [​IMG]MCB vuông cân ở M 
\Rightarrow [​IMG] hay [​IMG] 
Lại có:
[​IMG]
\Rightarrow [​IMG] (đpcm)
:-*:-*:-*:-*:-*|-)|-)|-):-SS:-SS:D:D:D:D:D;););)

;);)

Cách 1: 
Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o.